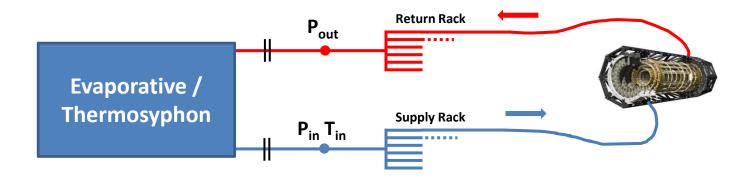




# Full Scale Thermosyphon Design Parameters and Technical Description

Jose Botelho Direito EN/CV/DC



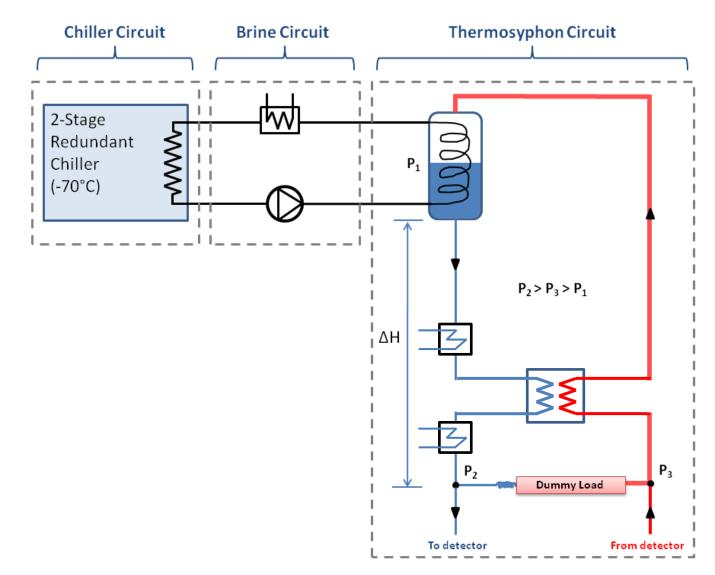



## Outline

- Design specifications
- Thermodynamic cycle
- Power requirement and power consumption
- Pipe sizing and insulation
- Condenser/Tank design



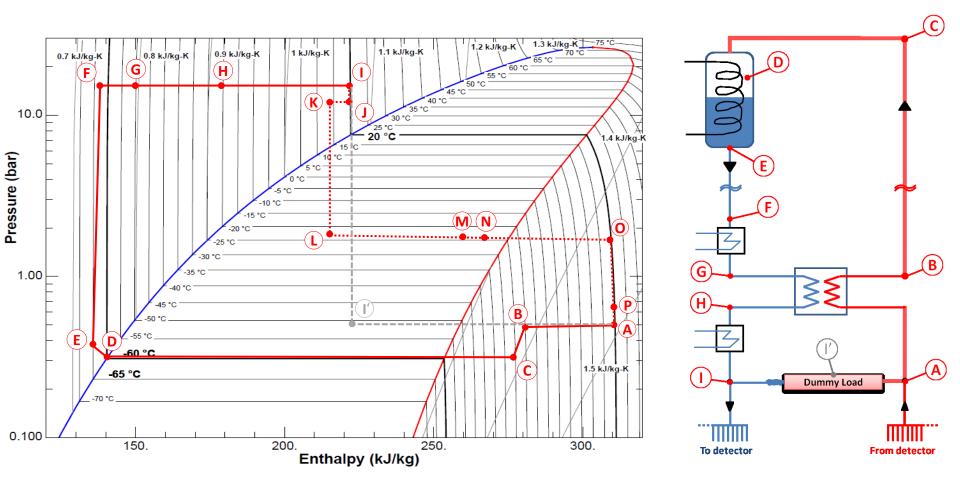
### **Thermosyphon Design Specification**




| Parameter                                                     | Actual Plant            | Thermosyphon Design Specification                  |  |
|---------------------------------------------------------------|-------------------------|----------------------------------------------------|--|
| Flow of C3F8 at full power                                    | 1.1 kg/s <sup>(1)</sup> | 1.2 kg/s                                           |  |
| Liquid pressure at the supply distribution lines (plant side) | 15 bara                 | 15 bara (Height required = 95 m)                   |  |
| Temperature at the supply rack                                | 20°C                    | 20°C                                               |  |
| Nominal pressure of the C3F8 at the return rack (plant side)  | 0.8 bara                | 0.5 bara ( $P_{sat}$ =0.31 bara; $T_{sat}$ =-60°C) |  |
| Temperature at the return rack                                | 20°C                    | 20°C                                               |  |
| Maximum operating pressure                                    | PN25                    | PN40                                               |  |
| (1) Read from the plant flow meter.                           |                         |                                                    |  |

19 November, 2010












## Thermodynamic Cycle





#### **Cooling and Electrical Power**



 $\mathbf{c}$ 

(B)

 $(\mathbf{A})$ 

ΠΗΠ

From detector

2

To detector

₹Ş

Dummy Load

| Operation<br>Line0 | Description                                | Component         | Power [kW]                                                  | Power Type        |
|--------------------|--------------------------------------------|-------------------|-------------------------------------------------------------|-------------------|
| Point A to B       | Cooling of the Return vapour               | Sub-Cooling HX    | 35                                                          | Passive component |
| Point B to C       | Return line                                | Return pipe       | (+) 4                                                       | Passive component |
| Point C to D       | Condensation                               | Tank Condensation | 165                                                         | -                 |
| Point D to E       | Sub-Cooling                                | Tank sub-cooling  | 5.5                                                         | -                 |
| Point C to E       | Condensing + Sub-cooling                   | Condenser/Tank    | (-) 170                                                     | Chiller Power     |
| Point E to F       | Supply line                                | Supply pipe       | (+) 4                                                       | Passive component |
| Point F to G       | Heating up to the dew point                | Electrical Heater | (-) 13                                                      | Electrical        |
| Point G to H       | Heating the liquid using the return vapour | Heat Exchanger    | 35                                                          | Passive component |
| Point H to I       | Heating to room temperature                | Electrical Heater | (-) 51                                                      | Electrical        |
| Point I' to A      | Evaporation and super heating              | Dummy Load        | (-) 107 <sup>(1)</sup> /22 <sup>(2)</sup> /0 <sup>(3)</sup> | Electrical        |

(1) During the commissioning period only.

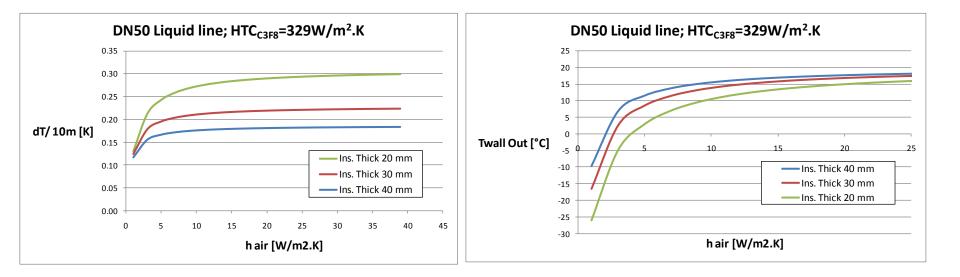
(2) Start up.

(3) Running trough the detector.





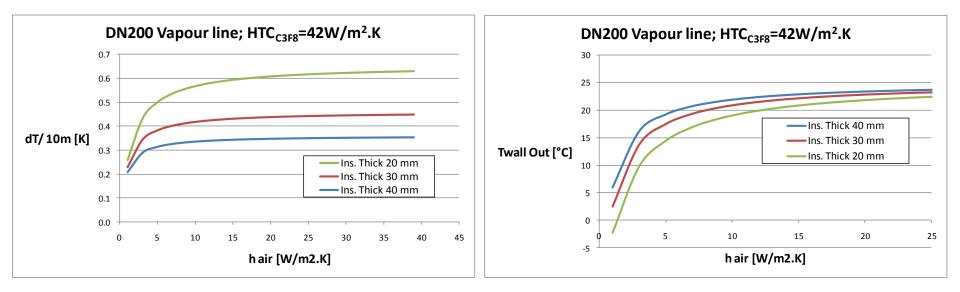
# Pipe Sizing and Insulation


- Supply Pipe:
  - Minimize pressure drop -> Larger diameter.
  - Minimize liquid volume and cost of pipes and installation -> Smaller diameter.
- Return Pipe:
  - Minimize pressure drop
    - A high pressure drop can force us to decrease saturation pressure, increasing the Chiller cost!
  - Minimize cost of pipes and installation
- Insulation:
  - Minimize heat pick up on the return line.
    - taking into account the external wall temperature of the Insulation.
  - Maximize heat pick up on the supply line.
    - Tanking into account the external wall temperature of the insulation.





# Pipe Sizing and Insulation: Supply

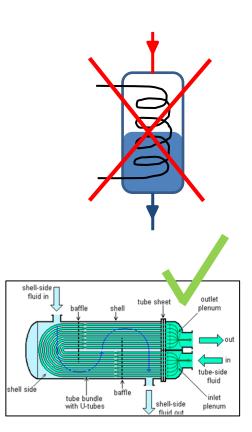

- Pipe Size and Insulation Supply:
  - DN50;  $\Delta P_{friction}$ =55mbar
  - Insulation Thickness: 40mm; ΔT<sub>max</sub>/100m=1.8K





# Pipe Sizing and Insulation: Return

- Pipe Size and Insulation Return:
  - DN200;  $\Delta P_{\text{friction}}$ =25mbar;  $\Delta P_{\text{height}}$ =35mbar (independent from the pipe)
  - Insulation Thickness: 40mm; ΔT<sub>max</sub>/100m=3.5K








# Condenser/Tank Design

- Total Cooling Power: 170kW (164.5kW of condensation + 5.5kW of sub-cooling).
- Required flow of C6F14:  $40 \text{kg/s} (\Delta T=5 \text{K})$ 
  - The pressure drop would be too high using only one coolant coil (standard size of ≈16mm ID).
  - The solution is the use of a Shell and Tube Heat Exchanger.



**Φ** 0.8m

\* Calculations will be verified by Claudio Zilio (Padova University)

and by the manufacture company.

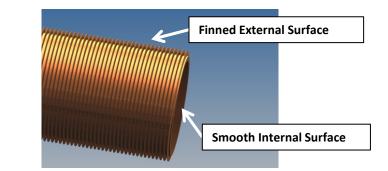
Required number of tubes: 225 (with 3m length; 0.208  $m^2/m$  of external finned surface area) ٠

Required surface area of heat exchange: 93 m<sup>2</sup>

First Approach<sup>\*</sup> on the Condenser Design:

HTC on Brine side: 1.1 kW/m<sup>2</sup>.K

Overall HTC: 253 W/m<sup>2</sup>.K


HTC on Condensing side: 12 kW/m<sup>2</sup>.K

- Number of tubes: 253 (12% over surface) .
- Number of loops: 42 •
- Number of tube passes: 4 •
- Velocity of C6F14: 2.6m/s (Copper alloy needed) •
- Pressure drop: 1.9 bar •

11

Л

 $C_3F_8$  liquid outlet (x3) To liquid tank



C<sub>3</sub>F<sub>8</sub> vapour inlet (x3)

3 m

# **Condenser** Design





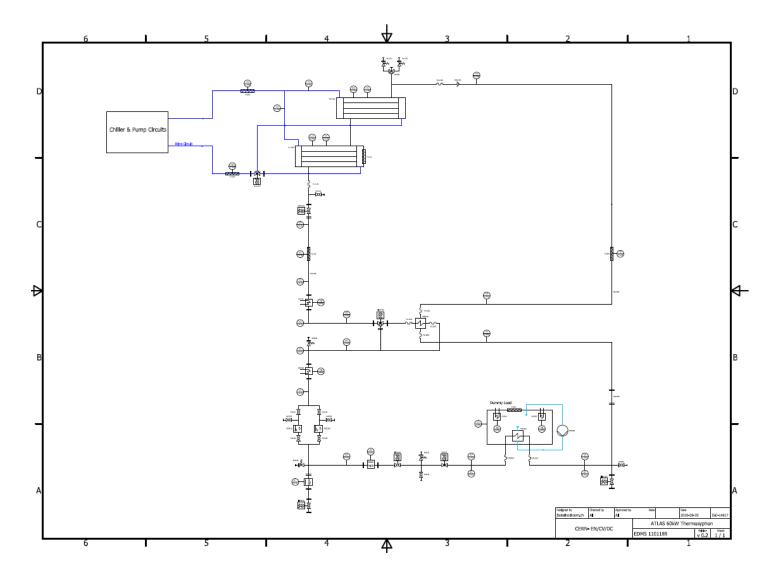
٠

٠

•

•






# Tank Design

- Total required mass of Liquid: 2750kg
  - Liquid side: 1565 kg
  - Vapour side: 644kg
  - Compensation for leaks: 540kg (3kg/day; 180days)
- Maximum volume: 2.15m<sup>3</sup> (@32°C)
- Minimum volume: 1.6m<sup>3</sup> (@-65°C)
- Approximate recommended total volume of the Tank: 2.5m<sup>3</sup>
- The possibility of joining the Condenser and the Tank is being studied.



# Thermosyphon P&ID

