Services for Thermosiphon

by Elena Perez Rodriguez

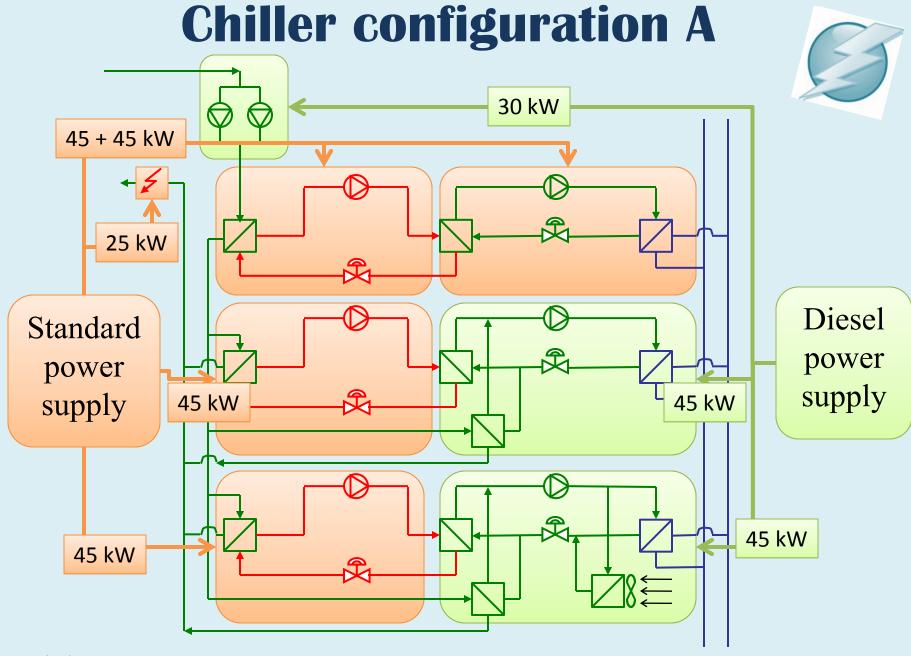
Index

- Introduction
- Electrical supply (standard, diesel, UPS)
 - Configuration A
 - Configuration B
 - Thermosiphon circuit
 - Commissioning
- Primary water
- Other services
- Conclusions

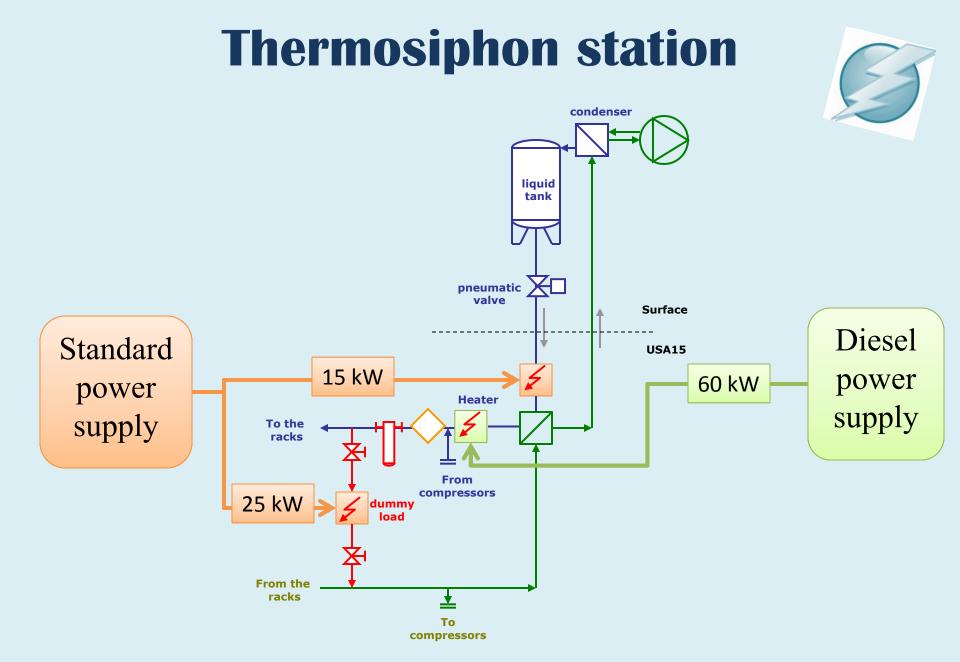
Introduction

• The Thermosiphon project will require the upgrade of some of the services at Point 1.

The main upgrade will be for the electrical supply


 A new connection to the primary water system will be done.

Other systems cannot be forgotten.


Electrical supply

- Kind of supply required
 - Standard, most of the equipment.
 - Diesel, for equipment which must stay operational during power cut.
 - UPS, for control cabinets.
- Location: the requirements will be divided between
 - Surface, chiller system, depending on the configuration.
 - Underground, electrical heaters and dummy load.
- Contact person : Wieslaw Iwanski (PH/ESE)

Chiller configuration B 30 kW 25 kW 180 kW Diesel Standard power supply power supply 20 kW 20 kW 19/11/2010 Thermosiphon project 6

Commissioning

 The thermosiphon and the chiller will be tested before the connection to the evaporative system.

 A dummy load with an electrical heater will be used for this purpose.

 An extra 107 kW will be needed temporally, during the commissioning phase, for this element.

Electrical supply - Summary

Location	Standard power supply	Diesel power supply	UPS power supply
Chillers	90 + 45 // 180	45 // 20	-
Control	-	-	5
Pumps	-	30	-
Heater	25	-	-
Total surface	160 // 205	75 // 50	5
Heater 1	15	-	-
Heater 2	-	60	-
Dummy Load	25	-	-
Total in USA15	40	60	-

+ 107 kW for commissioning

Primary water

Used for the chillers cooling

- Why?
 - Reliability, no intermediate systems.
 - Tap water for maintenance period of the towers
 - Air cooled for emergency situation

Technical characteristics

- Temperature = $27^{\circ}C \div 37^{\circ}C$
- Maximum temperature rise = 10°C
- Pressure supply = 2.8 bar
- Pressure drop = 1.6 bar

Primary water

Requests

Chillers cooling power	180 kW	
Water estimated power	380 kW	
Estimated water flow	18 kg/s ≈ 65 m³/h	
Preliminary pipe size	DN100	

- Works / installation
 - The connection can be done in bdg SH1
 - For the works the circuit shall be empty

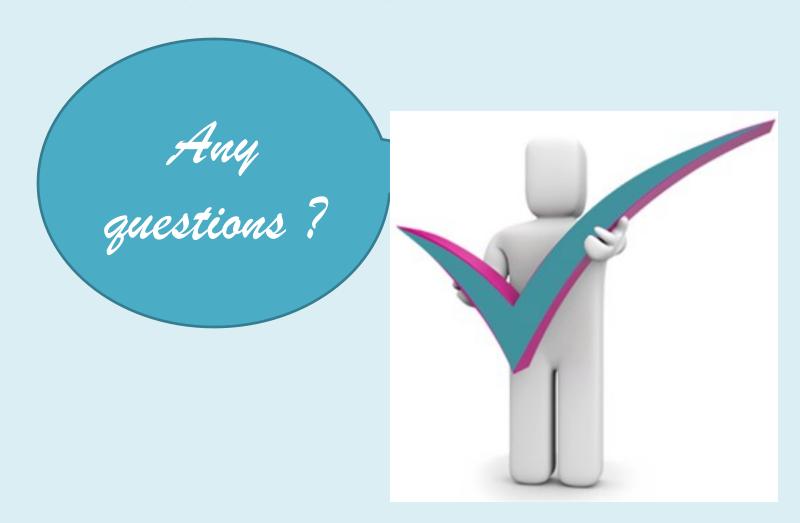
→ 16th December 2010

Size of the branch DN200

Other

- Compress air
 - The requirements of compress air are not yet defined

- Ethernet connections
 - At least 4 Ethernet connections will be needed for the control of the Thermosiphon.


Conclusions

 Services upgrade will be necessary for the thermosiphon project.

- An important upgrade has to be previewed for the electrical power supply in Point 1
 - EN/EL has already been contacted

 Primary water connection is being arranged to profit of the opportunity on December 16th.

Thank you for your attention

