GPDs: General Formalism and a few examples
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In QCD hadron structure is described by correlators of various type

<P(p)|q(:v)fyqu...Dunq(:c)|P(p)> momentum distribution of quarks
<P(p’) (j(x)vuq(x)‘P(p)> form factors of a proton
<P(p)‘Q(a:)FMq(az)(j’(az)F,’/q’(a;)‘P(p)> diquark correlations in a proton
<P(p, s)‘cj(:c)wém(w)q(x)‘]?(p, 3)> color magnetic field in a proton
<O d(—2)#[~z, z]u(z)q(:z:))pﬂp, s)> p distribution amplitude

<O ﬂ(z)u(z)‘0> vacuum condensates

Operator Product Expansion is the art of linking such correlators to physical
observables.



The physics of GPDs is just a natural extension of this framework

(P, )|a(=2)l=221a()|P( . 5))

which can be treated with the same rigor.

Be aware: There is no reason to believe that GPDs are any simpler than e.g.
distribution amplitudes, ds, or diquark correlations. Do not trust anybody who
sells fast and easy solutions.

The good news: you can stand on the shoulders of giants. The whole arsenal of
QCD techniques developed during the last 30 years is at your disposal. However,
climbing up there is very tedious, indeed.

To set the stage | will start with standard textbook OPE and Ji's sumrule.



An example from standard OPE: The hadron scattering tensor

ArWHY =

Jui0) | X (Px, 5x) )

DO |

;I (2m)%0°(P; + q — Px) <P(Pz'757;)

i X
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_ 1 dy eiq'y<p(Pi,S¢) |:j€/frjl(y)7jeym(())]_‘p(Pi’Si>>
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We will derive the optical theorem for WH#¥,



Forward scattering amplitude @
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The last term vanishes, because there is no hadron state with the nucleon quantum
numbers and lower energy, and one has
The optical theorem

Im TMV(PZ',SZ',C]) = 27 WHY




The derivation of, e.g., Ji's sum rule is completely analogous, with the energy-
momentum tensor T"” playing the role of the hadron scattering tensor WH".

1 ~ «— 1
LQCD — TW/ — i[qu(,u,&' DV) q + qu(,u,&' DV) Q] + Zg;u/FZ . F,UJQF,/(X
Jog = 57 / (T 27 — T 2F)

— Lorentz decomposition for <P2|TW

")

<P2|ng/g P1> — N(R) [Aq,g(AZ)WP”)+Bq,g(A2)P<wa”>%a/zM

O, (A2)(AFAY — g A%) /M + Cy (A" M| N (P)

Pt = (PY+ P2, A* = pHt _ pt

<Jé,g> — % [Aq,4(0) + By ,4(0)]



The DVCS amplitude:
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Where can one find the same matrix elements in T#" as in <P2‘T’“"P1>?
— OPE:

< <

optiv-tin = Sym q(z)y"i D "..i D " q(x) local operators
<P2‘Og“1“'“’” P1> = Sym N(B)Y'N(P) Y
1=0,even

AL (AP A pHi | phn

iohe A, &
o NV 2

1=0,even
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q
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The A’s in <P2‘TW‘P1> correspond to Ag,o.

1 :
<J§’> = 5[14‘2{0(0) + B3 1(0)] Ji's sumrule

/ draz" ' H(x, &) = i(Q{)kAn,k(t)—l—mod(n—kl,Z) (26)"C(t)

k=0
even

/ drz" ' E(x,€,t) = z_:(%)k B, k(t) —mod(n + 1,2) (2£)"C,(t)

k=0

even



The following moments have so far been calculated on the lattice

N:
AlO' A201 A30' A32, BlO' B20' B30v B321 C20'
A1o' A2O' ASO' A32, BlO' BQO' BSO' BSQ'

ATlO’ ATQO’ BTlO_B O+2AT10’ BTQO' ATlO' A%ZO’ B%Ql

AlO' A2O' 020' BTlO’ BTZO



Formal Definition of GPDs

We use the notation of X.Ji and name the momenta according to: h(Pl)—|—F*(q1) —
h(Py) + I'(g2) for any hadron h and define A, = o, — g1, t = AZ
P, = (P+Ps) /2 n, = (1,0,0,—1)/V2PT — n- P—1andé = ~Q%/2P-q.
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Some aspects:
e relation to form factors and distribution functions

Hy(,0,0) = q(z) [ drHy(x, &,t) = Fig()

H,(,0,0) = Ag(x) 1y deHy(w,6,t) = gag(t)

e polynomiality

n

[dza @)= Y0 (2041 (6 + mod(n,2)(29)" ()

7 even

e GPDs give information on the transverse structure of hadrons in the impact
parameter plane. The transverse mass is ,/qﬁ + m?2. Therefore a probabilistic
interpretation makes sense.

1

2y _
HQ(xa 07 bJ_) _(27_‘_)2

/ PA | ePAH (2,0,A%)
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Exclusive electro production of pion pairs
N. Warkentin, M. Diehl, D.Yu. lvanov, and AS
hep-ph /0703148

v (q) + N(p) = (k) + 7 (k') + N(p')




The factorization (Collins et al., Freund)

N —

F: GPDs
C: Hard kernel in NLO
®: Two-pion distribution amplitudes

We will find that the main source of uncertainties are not due to the core QCD
calculation but due to a lack of understanding of 2 pion phase shifts !



Two-pion distribution amplitudes

DU(z,C,5r) = / PN o (R (k)

0 Cs) = o |

q'-n

1(\n)rta(0)[0)

dA e_z'z)\(q/.n) NN <7T+(]€)7T_(k‘/)

o

G (xn) G, (0)|0)

C:k.n Bcosh =2¢ —1, ﬁ—\/14m72r

9
q -n

states with definite C parity:

DUE) (2, ¢, 1) = 5[0z, G, 50) £ DUz, 1=, 57))

N | —

(Q? evolution of distribution amplitudes is described by ERBL-equations.
Gegenbauer polynomials are eigenfunctions of the evolution kernel
(C’TS/2 for spin 1/2 and C2/? for spin 1).

— It is natural to expand GDAs in terms of Gegenbauer polynomials.



oo n—+1

U (2, ¢, s.) = 62(1—2 Z Z BQ( ) (s5)C32(22 — 1) P(2¢ — 1),

n=0 [=1
even odd

oo n—+1

I (2,¢,s.) = 62(1—2z Z Z Bq(ﬂ (s5)C32(22 — 1) P(2¢ — 1),

n=1 [=0

odd even

oo n+1

DI(z,C,50) = 92°(1—2)2) Y BY(sx) O (22 — 1) B(2¢ — 1),

n=1 [=0

odd even

HERMES analyzed only (P;(cos#)) and (P3(cos#)) — We only need B1g and Bis.



The case s, = 0+ is fixed by our GPD OPE analysis for t = 0—.

<7T+(p’) Sym g(0)y*i D *..iD #n Q(O)‘7T+(p)>
= Sym?2 ) Al (t)AMAFiPHit1 Pl
1=0,even
10
Bi,(0) = jAgo(O) etc.

The case s, m, small, can be treated by chPT in NLO.
M. Diehl, A. Manashov and AS, Phys. Lett. B622, 69 (2005), hep-ph/0505269.

m S m2 — 2s m2 4  s_+ 2m?
Bio(sr) = _Bg) 1+ Cgo )m72r + Cgo)sw +— 2 - ln—; +5—— = J(B)
2A5, wy 3 Sn

+O(AY)

Biy(sx) = Bg) {1 + ngl)mgr + ng)sw} + O(A;4) )



The elastic region 4m2 < s, < 4m% ~ 1GeV?, can be treated using Watson's
theorem.

The S-matrix elements in the 27 channel: 7;e?'!

2i0; 1
21

. . e
The 7-matrix elements in the 27 channel:

For elastic scattering 17; = 1 the phases of both are equivalent.

Bio(8x) + Bia(sz) Pa(2¢ — 1) = Bio(sx) + Bia(sy) Pa(cos ),

~ ~

= ~(sx) = B,,;(sx) exp[—2i5l(sw)}

For inelastic scattering 17; < 1 the situation becomes confusing.



The mm phase shifts
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Phase shifts 0; of w7 scattering in the isoscalar channel obtained by Kaminski et
al. [43] and by Bugg [44]. dr; is the T-matrix phase. Our signal is primarily
sensitive to the derivative.



—-- NLO3J,, 3,
. NLO 3, Ref.[44], &,

NLO3, ;. 3,

LO &, 3,

T,0’
. NLOd 3., (no gluons)

Hydrogen target ~

T,0’

T

do/dm

m__[GeV]

Two-pion invariant mass spectrum (in arbitrary units) for v* +p — 777~ +p
In the end we use a once subtracted dispersion integral representation for the

sx-dependence, for details see our paper.



The NLO hard cross section:

L L

= lengthy expressions, see paper




GPD parametrisation

The precision of the HERMES data is insufficient to fit the GPDs. We use as place-
keeper: A factorized Radyushkin’'s double distribution ansatz plus Polyakov-Weiss
term.

HU(r.6.0) = Hpp(r.6.0)+ 0(¢ - 2))D @

HY p(2,6,0) = / da’ / T b ~ €0) [0(a") g(a’) — 0(—) a(~)

14+ |2’|

B 1€
SRl S Pk

with MRST 2004 parton distributions and D from the quark-soliton model

D(z) = —4.0(1 — 2?) |C¥*(2) + 0.3C2?(z) + 0.1 C2/%(2)



Hydrogen Deuterium
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Legendre moments (P;) and (P3) for different two-pion phase shifts.



Hydrogen Deuterium
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Legendre moments for 07; and different choices for a free constant of our
dispersion relation.



Interpretation:

e For s, <1 GeV? things seem to be under control. More precise data is needed.

o For s, >1 GeV? large uncertainties due to a lack of understanding of the
2m-system.

= A nice topic for COMPASS-hadron + COMPASS-muon 7
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t = —0.27 GeV? and Q? = 7 GeV?.



DVCS in NNLO

e My firm belief: To achieve the precision needed for GPD physics onemust go to
NNLO. Models with never reach the accuracy needed.

e However, NNLO for GPDs is much harder than for PDFs etc. New concepts
are needed. D. Miiller was able to solve this problem for DVCS (with a little help
from some friends). Kumeri¢ki, Miiller and Passek-Kumericki, hep-ph /0703179
This is real tour de force of far reaching importance !

Technically, however, it is too difficult for this talk. | shall only sketch a few
elements.

Main Idea: Formulate OPE in a new manner, based on conformal symmetry,
which you should anyway learn about in view of AdS/QCD.

A very good introduction to start with:

'The Uses of conformal symmetry in QCD.’

V.M. Braun, G.P. Korchemsky and Dieter Mueller
Prog.Part.Nucl.Phys.51:311-398,2003, hep-ph/0306057



Conformal symmetry

Poincaré group:  ds* = g, da*dz—ds? G = G

Conformal group:  ds* = g,,,(x)dztdz”—ds? 91, () = w(x)guu ()

w(x) can be re-absorbed into x — scaling transformation, e.g. the special
conformal transformation

2
;o Ty + aux
Ly 7 Ly = 5.9

1+ 2a-x + a*x

There are 15 generators:
4 translation operators: P, 6 rotation/boost operators: M,

1 dilatation operators: D 4 special conformal operators: K,

The corresponding orthogonal polynomials are the Jacobi polynomials P**’,
At twist-2 level one needs only P** ~ Gegenbauer polynomials C7.



MS — CS

If QCD were a conformal theory, conformal operators would not mix under
Q? := —(q1 + ¢2)?/4-evolution. In real life 8 # 0 and mixing occurs.
The 'modified conformal scheme’: The Wilson coefficients:

C, (g %Q CYS,“) = ; Ck (g 1, osz)

X Pexp{/f dT'Lf/ [’Yj(as(ﬂl))5kj + (ﬂ) k_ngkj(QS(M/))] }

Q § g

The Cy, (g,l,aSQ> and 7;(as(p')) can be obtained from the NNLO results of

Vermaseren, Moch, Vogt, van Neerven. The Apg; are basically unknown, their
calculation is a major outstanding task. However, for t ~ ) and i
29 ot too large the corrections should be small. This solves the basic problem
in principle, but not in practice, as standard expansions in Gegenbauer polynomials

etc. do not converge.



The Mellin-Barnes representation

F(&,m/€ =:0,A% Q%) stands for a generic Compton form factor, e.g. H and we
suppress NS, S+, S— indices.

1 [etiee . tan | /7j
2 12y _ Ce—j—1]: mJ , 2 2
FEo.a%Qh = 5| dj¢ 1i{cot}(2)]fg<e,A,Q>
+ C(6,A%Q7%
CO.0% Q)M +E] = 0
C0.0%. Q)] = 2 lim 5j(9,A2,Q2)—Rjgj(H—O,Az,QQ)]
J——

C( AZ/UQ s (fe)

l =l =1
Jm £ Jimlo(e_o A2/ 12, (1)
d )=
paFi = les(n) (0€)" Agn(ors (1)) F
k=0



Results

AK<Q2 — _Q%a Qg) —
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The 11, dependence of *H for u2 = Q?/2 «+» u2 = 202 in percent

soft gluon | € =10"°|10"*] 1073 ] 0.01 | 0.1 | 0.25 | 0.5
NLO 2.4 28 |35 |50 |58 |44 |24
NNLO -1.6 06 |03 |06 [22 |35 |37
hard gluon

NLO 24.9 21.0 | 18.1 | 158|109 | 7.1 | 3.9
NNLO 3.4 56 |65 |57 |67 |69 |50
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zq(z, p2 = 4GeV?)
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Resulting pdf's. The band is Alekhin's NLO fit.



Photon Diffractive Dissociation
V. Braun et al., PRL89 (2002) 172001; hep-ph/0206305

Chirality Conserving contribution (CC):

_ 1ty
(0]a(0)74== " a(z—,1)|yM(0))

Chirality Violating contribution (CV):

(012(0)7apa(@) Y M(9)) = i g x(a) (s — €5 qa) / du e™"4%) . (u, 1)



A very interesting channel, as x is the magnetic susceptibility of the quark
condensate (loffe, Smilga 1983).

<OWUQBQ‘O>F — €g X <QQ> Fa,@

CC and CV contributions do not interfere and CC contribution is of order 1/¢%
while CV is of order 1/¢% .

Everything looks fine, but it is not |



The Chirality Violating Amplitude

Jev = i/ldyofduﬁg(y,f)cp”(“){w << 2 1

P uu
+ (CF(:L—;L+1)

1 sz =z U+ uz
T 2Nc(a+a>)y(z—u)—f(zu—l—uz)—l—ie

2z 1 2 Z 1
- (OFuﬂ+2NC (£+5)> (y—f—ie)}

is logarithmically divergence at the end-points © — 0, 1

— collinear factorization is violated !



In this case things can be patched up with an IR-cutoff uyin, = ,u%R/qi

2 =2 1 d
7 = 2imy(6.6) (Nesz 4 215 [ e

Also, the z and ¢ dependence is characteristically different for CV and CC, which

allows to disentangle them phenomenologically. ¢ is the angle between the photon
polarization and the transverse jet momentum.

However, the lesson to learn is that "physical intuition’ can be very misleading.
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Conclusions

e GPDs are a fascinating topic. Unfortunately | did not have the time to speak
about their rich phenomenology. — P. Hagler's and P. Kroll's talks.

e Over the last ten years very substantial theoretical progress was made in our
understanding of GPDs: pQCD in NLO and NNLO, lattice QCD, chPT, dispersion
integral analysis, ...

e The message is mixed: Some reactions get under control, like DVCS, some
need further phenomenological input, like exclusive 7™ — 7~ electro production,
some are problematic, like photon diffraction, and some are a complete mess, like
exclusive J /v production.

e There is no alternative to state-of-the-art QCD calculations for each reaction
channel, to find out.



