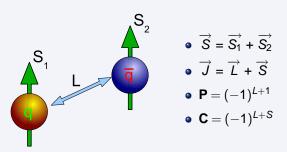
Light mesons spectroscopy and search for non- $q\overline{q}$ mesons at COMPASS

A. Ferrero

aferrero@to.infn.it

on behalf of the COMPASS collaboration

COMPASS International Workshop Freiburg, March 19 2007

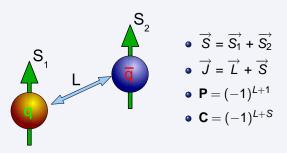


- Introduction
- Experimental evidences of Glueballs and Hybrids
- Meson spectroscopy @ COMPASS
- 4 Conclusions

- Introduction
- Experimental evidences of Glueballs and Hybrids
- Meson spectroscopy @ COMPASS
- Conclusions

Conventional mesons

- ullet Conventional mesons are composed of a $q\overline{q}$ pair
- Mesons quantum numbers are characterized by given JPC

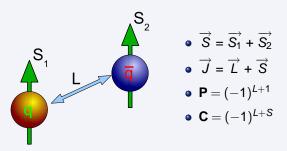


Allowed J^{PC} combinations: 0^{-+} , 0^{++} , 1^{--} , 1^{+-} , 1^{++} , ...

"Exotic" J^{PC} combinations: 0^{--} , 0^{+-} , 1^{-+} , 2^{+-} , ...

Conventional mesons

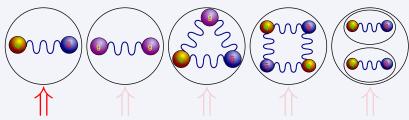
- Conventional mesons are composed of a $q\overline{q}$ pair
- Mesons quantum numbers are characterized by given JPC



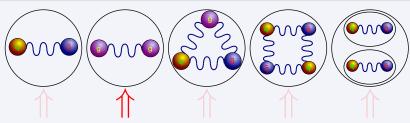
Allowed J^{PC} combinations: 0^{-+} , 0^{++} , 1^{--} , 1^{+-} , 1^{++} , ...

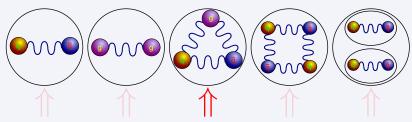
"Exotic" J^{PC} combinations: 0^{--} , 0^{+-} , 1^{-+} , 2^{+-} , ...

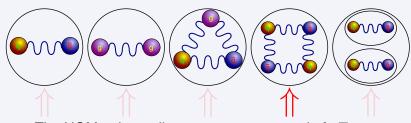
Conventional mesons

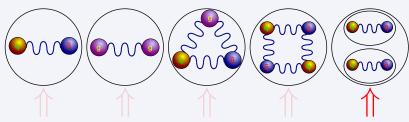

- Conventional mesons are composed of a $q\overline{q}$ pair
- Mesons quantum numbers are characterized by given JPC

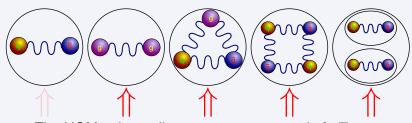
Allowed J^{PC} combinations: 0^{-+} , 0^{++} , 1^{--} , 1^{+-} , 1^{++} , ...


"Exotic" J^{PC} combinations: 0^{--} , 0^{+-} , 1^{-+} , 2^{+-} , ...

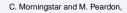

- ullet The NQM only predicts mesons composed of $q \overline{q}$
- However, QCD allows the existence of non- $q\overline{q}$ mesons:
 - Glueballs: states with only valence gluons (gg, ggg)
 - Hybrids: qq-systems with one additional valence gluon
 - qqqq bound states and meson-meson molecules
- The unabiguous experimental identification of such states represents a fundamental test of non-perturbative QCD

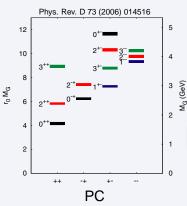

- ullet The NQM only predicts mesons composed of $q \overline{q}$
- However, QCD allows the existence of non- $q\overline{q}$ mesons:
 - Glueballs: states with only valence gluons (gg, ggg)
 - Hybrids: qq-systems with one additional valence gluon
 - qqqq bound states and meson-meson molecules
- The unabiguous experimental identification of such states represents a fundamental test of non-perturbative QCD


- ullet The NQM only predicts mesons composed of $q\overline{q}$
- However, QCD allows the existence of non- $q\overline{q}$ mesons:
 - Glueballs: states with only valence gluons (gg, ggg)
 - Hybrids: qq-systems with one additional valence gluon
 - qqqq bound states and meson-meson molecules
- The unabiguous experimental identification of such states represents a fundamental test of non-perturbative QCD


- ullet The NQM only predicts mesons composed of $q\overline{q}$
- However, QCD allows the existence of non- $q\overline{q}$ mesons:
 - Glueballs: states with only valence gluons (gg, ggg)
 - Hybrids: $q\overline{q}$ -systems with one additional valence gluon
 - qqqq bound states and meson-meson molecules
- The unabiguous experimental identification of such states represents a fundamental test of non-perturbative QCD

- ullet The NQM only predicts mesons composed of $q \overline{q}$
- However, QCD allows the existence of non- $q\overline{q}$ mesons:
 - Glueballs: states with only valence gluons (gg, ggg)
 - Hybrids: $q\overline{q}$ -systems with one additional valence gluon
 - qqqq bound states and meson-meson molecules
- The unabiguous experimental identification of such states represents a fundamental test of non-perturbative QCD

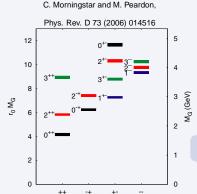



- ullet The NQM only predicts mesons composed of $q\overline{q}$
- However, QCD allows the existence of non- $q\overline{q}$ mesons:
 - Glueballs: states with only valence gluons (gg, ggg)
 - Hybrids: qq-systems with one additional valence gluon
 - qqqq bound states and meson-meson molecules
- The unabiguous experimental identification of such states represents a fundamental test of non-perturbative QCD

Glueballs mass spectrum

Glueballs mass spectrum from quenched lattice calculations

- Lower mass glueballs:
 - $J^{PC} = 0^{++}$ scalar $M \sim 1700 \text{ MeV}/c^2$
 - $J^{PC} = 2^{++}$ tensor $M \sim 2400 \text{ MeV}/c^2$
- The light glueballs have conventional J^{PC}


mixing with nearby $q\overline{q}$ mesons

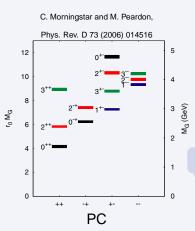
 The lighter exotic glueball (2⁺⁻) is above 4 GeV/c²

Glueballs mass spectrum

Glueballs mass spectrum from quenched lattice calculations

PC

- Lower mass glueballs:
 - $J^{PC} = 0^{++}$ scalar $M \sim 1700 \text{ MeV}/c^2$
 - $J^{PC} = 2^{++}$ tensor $M \sim 2400 \text{ MeV}/c^2$
- The light glueballs have conventional J^{PC}


mixing with nearby $q\overline{q}$ mesons

The lighter exotic glueball (2⁺⁻) is above 4 GeV/c²

Glueballs mass spectrum

Glueballs mass spectrum from quenched lattice calculations

- Lower mass glueballs:
 - $J^{PC} = 0^{++}$ scalar $M \sim 1700 \text{ MeV}/c^2$
 - $J^{PC} = 2^{++}$ tensor $M \sim 2400 \text{ MeV/}c^2$
- The light glueballs have conventional J^{PC}

mixing with nearby $q\overline{q}$ mesons

 The lighter exotic glueball (2⁺⁻) is above 4 GeV/c²

- Glueballs can be identified by:
 - Flavour independence \rightarrow $BR(K\overline{K}) \approx BR(\pi\pi)$
 - $BR(\eta \eta') \approx 0$
 - Enhancement in gluon-rich processes:
 - Central collisions
 - pp̄ annihilations
 - J/Ψ radiative decays
 - Suppression in $\gamma\gamma$ collisions
 - Supernumerary states in established $q\overline{q}$ nonets
- Need to combine data from different production processes/decay patterns
- For states with non-exotic J^{PC} , mixing with nearby $q\overline{q}$ mesons complicates the picture...

- Glueballs can be identified by:
 - Flavour independence \rightarrow $BR(K\overline{K}) \approx BR(\pi\pi)$
 - $BR(\eta \eta') \approx 0$
 - Enhancement in gluon-rich processes:
 - Central collisions
 - $p\overline{p}$ annihilations
 - J/Ψ radiative decays
 - Suppression in $\gamma\gamma$ collisions
 - Supernumerary states in established $q\overline{q}$ nonets
- Need to combine data from different production processes/decay patterns
- For states with non-exotic J^{PC} , mixing with nearby $q\overline{q}$ mesons complicates the picture...

- Glueballs can be identified by:
 - Flavour independence $\rightarrow BR(K\overline{K}) \approx BR(\pi\pi)$
 - $BR(\eta \eta') \approx 0$
 - Enhancement in gluon-rich processes:
 - Central collisions
 - pp̄ annihilations
 - J/Ψ radiative decays
 - Suppression in $\gamma\gamma$ collisions
 - Supernumerary states in established $q\overline{q}$ nonets
- Need to combine data from different production processes/decay patterns
- For states with non-exotic J^{PC} , mixing with nearby $q\overline{q}$ mesons complicates the picture...

- Glueballs can be identified by:
 - Flavour independence $\rightarrow BR(K\overline{K}) \approx BR(\pi\pi)$
 - $BR(\eta \eta') \approx 0$
 - Enhancement in gluon-rich processes:
 - Central collisions
 - pp̄ annihilations
 - J/Ψ radiative decays
 - Suppression in $\gamma\gamma$ collisions
 - Supernumerary states in established $q\overline{q}$ nonets
- Need to combine data from different production processes/decay patterns
- For states with non-exotic J^{PC} , mixing with nearby $q\overline{q}$ mesons complicates the picture...

- Glueballs can be identified by:
 - Flavour independence $\rightarrow BR(K\overline{K}) \approx BR(\pi\pi)$
 - $BR(\eta \eta') \approx 0$
 - Enhancement in gluon-rich processes:
 - Central collisions
 - pp̄ annihilations
 - J/Ψ radiative decays
 - Suppression in $\gamma\gamma$ collisions
 - Supernumerary states in established $q\overline{q}$ nonets
- Need to combine data from different production processes/decay patterns
- For states with non-exotic J^{PC} , mixing with nearby $q\overline{q}$ mesons complicates the picture...

- Glueballs can be identified by:
 - Flavour independence \rightarrow $BR(K\overline{K}) \approx BR(\pi\pi)$
 - $BR(\eta \eta') \approx 0$
 - Enhancement in gluon-rich processes:
 - Central collisions
 - pp̄ annihilations
 - J/Ψ radiative decays
 - Suppression in $\gamma\gamma$ collisions
 - Supernumerary states in established $q\overline{q}$ nonets
- Need to combine data from different production processes/decay patterns
- For states with non-exotic J^{PC} , mixing with nearby $q\overline{q}$ mesons complicates the picture...

- Glueballs can be identified by:
 - Flavour independence \rightarrow $BR(K\overline{K}) \approx BR(\pi\pi)$
 - $BR(\eta \eta') \approx 0$
 - Enhancement in gluon-rich processes:
 - Central collisions
 - pp̄ annihilations
 - J/Ψ radiative decays
 - Suppression in $\gamma\gamma$ collisions
 - Supernumerary states in established $q\overline{q}$ nonets
- Need to combine data from different production processes/decay patterns
- For states with non-exotic J^{PC} , mixing with nearby $q\overline{q}$ mesons complicates the picture...

- QCD allows for the existence of colour singlet states composed of a $q\bar{q}$ -pair and one valence gluon, the so-called hybrid mesons
- In total 8 nonets with quantum numbers
- Hybrids should have distinctive decay patterns
- Exotic quantum numbers are allowed for qqq states
- The lightest hybrid meson is predicted to be an exotic
- Exotic $q\bar{q}q\bar{q}$ states might exist in the same mass region...

- QCD allows for the existence of colour singlet states composed of a $q\overline{q}$ -pair and one valence gluon, the so-called hybrid mesons
- In total 8 nonets with quantum numbers $J^{PC}=0^{\pm\mp},\,1^{\pm\mp},\,2^{\pm\mp}$ and $1^{\pm\pm}$ have been predicted in flux-tube models
- Hybrids should have distinctive decay patterns (pairs of S- and P-wave mesons)
- Exotic quantum numbers are allowed for $q\overline{q}g$ states
- The lightest hybrid meson is predicted to be an exotic $J^{PC} = 1^{-+}$ object with a mass between 1.4 and 1.9 GeV/ c^2
- Exotic qqqq states might exist in the same mass region...

- QCD allows for the existence of colour singlet states composed of a $q\overline{q}$ -pair and one valence gluon, the so-called hybrid mesons
- In total 8 nonets with quantum numbers $J^{PC}=0^{\pm\mp},\,1^{\pm\mp},\,2^{\pm\mp}$ and $1^{\pm\pm}$ have been predicted in flux-tube models
- Hybrids should have distinctive decay patterns (pairs of S- and P-wave mesons)
- Exotic quantum numbers are allowed for $q\overline{q}g$ states
- The lightest hybrid meson is predicted to be an exotic $J^{PC} = 1^{-+}$ object with a mass between 1.4 and 1.9 GeV/ c^2
- Exotic qqqq states might exist in the same mass region...

- QCD allows for the existence of colour singlet states composed of a $q\overline{q}$ -pair and one valence gluon, the so-called hybrid mesons
- In total 8 nonets with quantum numbers $J^{PC}=0^{\pm\mp},\,1^{\pm\mp},\,2^{\pm\mp}$ and $1^{\pm\pm}$ have been predicted in flux-tube models
- Hybrids should have distinctive decay patterns (pairs of S- and P-wave mesons)
- Exotic quantum numbers are allowed for $q\overline{q}g$ states
- The lightest hybrid meson is predicted to be an exotic $J^{PC} = 1^{-+}$ object with a mass between 1.4 and 1.9 GeV/ c^2
- Exotic $q\overline{q}q\overline{q}$ states might exist in the same mass region...

- QCD allows for the existence of colour singlet states composed of a $q\overline{q}$ -pair and one valence gluon, the so-called hybrid mesons
- In total 8 nonets with quantum numbers $J^{PC}=0^{\pm\mp},\,1^{\pm\mp},\,2^{\pm\mp}$ and $1^{\pm\pm}$ have been predicted in flux-tube models
- Hybrids should have distinctive decay patterns (pairs of S- and P-wave mesons)
- Exotic quantum numbers are allowed for $q\overline{q}g$ states
- The lightest hybrid meson is predicted to be an exotic $J^{PC} = 1^{-+}$ object with a mass between 1.4 and 1.9 GeV/ c^2
- Exotic $q\overline{q}q\overline{q}$ states might exist in the same mass region...

- QCD allows for the existence of colour singlet states composed of a $q\overline{q}$ -pair and one valence gluon, the so-called hybrid mesons
- In total 8 nonets with quantum numbers $J^{PC}=0^{\pm\mp},\,1^{\pm\mp},\,2^{\pm\mp}$ and $1^{\pm\pm}$ have been predicted in flux-tube models
- Hybrids should have distinctive decay patterns (pairs of S- and P-wave mesons)
- Exotic quantum numbers are allowed for $q\overline{q}g$ states
- The lightest hybrid meson is predicted to be an exotic $J^{PC} = 1^{-+}$ object with a mass between 1.4 and 1.9 GeV/ c^2
- Exotic qqqqq states might exist in the same mass region...

- Introduction
- Experimental evidences of Glueballs and Hybrids
- Meson spectroscopy @ COMPASS
- Conclusions

Overview of glueball candidates

- Three $J^{PC} = 0^{++}$ states around 1500 MeV/ c^2 :
 - $f_0(1370)$, decaying into $\pi^+\pi^-$, $K\overline{K}$, $\eta\eta$, 4π
 - $f_0(1500)$, decaying into $\pi^+\pi^-$, $K\overline{K}$, $\eta\eta$, $\eta'\eta$, 4π
 - $f_0(1710)$, decaying into $\pi^+\pi^-$, $K\overline{K}$, $\eta\eta$
- Found in $p\bar{p}$ annihilation, central pp collisions and J/Ψ radiative decays
- Using WA102 (central production) and BES (J/Ψ decays) data, Close and Zhao conclude that:
 - $f_0(1370)$ is mainly an $n\overline{n}$ (n = u, d) object
 - $f_0(1500)$ is mainly made of glue
 - $f_0(1710)$ is mainly an $s\overline{s}$ object

Overview of glueball candidates - continued

- The $f_0(1370)$, $f_0(1500)$ and $f_0(1710)$ seem to be well established
- However, their interpretation in terms of mixing of the scalar glueball with $q\overline{q}$ states is not universally accepted
- Candidates for the tensor (2⁺⁺) and pseudoscalar (0⁻⁺) are not yet assigned

More data on $f_0(1710)$ branching ratios, as well as a systematic study in the 2 GeV/ c^2 mass region, are needed

Overview of glueball candidates - continued

- The $f_0(1370)$, $f_0(1500)$ and $f_0(1710)$ seem to be well established
- However, their interpretation in terms of mixing of the scalar glueball with $q\overline{q}$ states is not universally accepted
- Candidates for the tensor (2⁺⁺) and pseudoscalar (0⁻⁺) are not yet assigned

More data on $f_0(1710)$ branching ratios, as well as a systematic study in the 2 GeV/ c^2 mass region, are needed

The $J^{PC} = 1^{-+}$ exotic mesons

- Three $J^{PC} = 1^{-+}$ mesons have been observed:
 - $\pi_1(1400)$, decaying into $\eta \pi$ and $\rho \pi$
 - $\pi_1(1600)$, decaying into $\eta' \pi$, $\rho \pi$, $f_1(1285) \pi$ and $b_1(1230) \pi$
 - $\pi_1(2000)$, decaying into $f_1(1285)\pi$ and $b_1(1230)\pi$
- $\pi_1(1400)$ and $\pi_1(1600)$ have been reported in diffractive πN scattering (VES and E852) and $\overline{p}p$ annihilations (Crystal Barrel/Obelix)
- $\pi_1(2000)$ has been only seen by E852

 J^{PC} -exotic mesons have been clearly observed, but...

The interpretation of such states as hybrids is still controversial, and the resonant nature of $\pi_1(1400)$ is being debated

The $J^{PC} = 1^{-+}$ exotic mesons

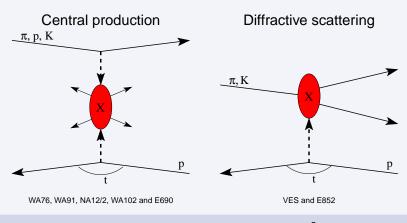
- Three $J^{PC} = 1^{-+}$ mesons have been observed:
 - $\pi_1(1400)$, decaying into $\eta \pi$ and $\rho \pi$
 - $\pi_1(1600)$, decaying into $\eta' \pi$, $\rho \pi$, $f_1(1285) \pi$ and $b_1(1230) \pi$
 - $\pi_1(2000)$, decaying into $f_1(1285)\pi$ and $b_1(1230)\pi$
- $\pi_1(1400)$ and $\pi_1(1600)$ have been reported in diffractive πN scattering (VES and E852) and $\overline{p}p$ annihilations (Crystal Barrel/Obelix)
- $\pi_1(2000)$ has been only seen by E852

JPC-exotic mesons have been clearly observed, but...

The interpretation of such states as hybrids is still controversial, and the resonant nature of $\pi_1(1400)$ is being debated

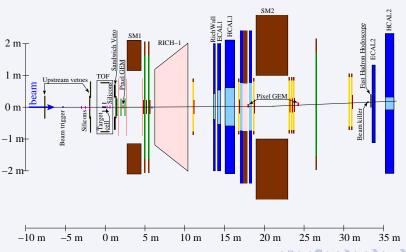
The $J^{PC} = 1^{-+}$ exotic mesons

- Three $J^{PC} = 1^{-+}$ mesons have been observed:
 - $\pi_1(1400)$, decaying into $\eta \pi$ and $\rho \pi$
 - $\pi_1(1600)$, decaying into $\eta' \pi$, $\rho \pi$, $f_1(1285) \pi$ and $b_1(1230) \pi$
 - $\pi_1(2000)$, decaying into $f_1(1285)\pi$ and $b_1(1230)\pi$
- $\pi_1(1400)$ and $\pi_1(1600)$ have been reported in diffractive πN scattering (VES and E852) and $\overline{p}p$ annihilations (Crystal Barrel/Obelix)
- $\pi_1(2000)$ has been only seen by E852


JPC-exotic mesons have been clearly observed, but...

The interpretation of such states as hybrids is still controversial, and the resonant nature of $\pi_1(1400)$ is being debated

- 1 Introduction
- Experimental evidences of Glueballs and Hybrids
- Meson spectroscopy @ COMPASS
- Conclusions


Central production and diffractive scattering

Target recoils with $-t \lesssim 1 \text{ (GeV/}c)^2$

The COMPASS experimental apparatus

Only elements specific to the measurements with hadron beams are marked

- Beam: 190 GeV negative hadrons \sim 96% π^- , \sim 3.5% K^- , \sim 0.5% \overline{p}
- Beam particle identification by means of CEDAR counters
- Beam intensity: ~5⋅10⁶ had/s (10s bounches every 40s)
- Target: liquid hydrogen, 40 cm long
- Luminosity: 0.15 pb⁻¹/day
- Two-stage magnetic spectrometer with excellent momentum resolution
- Hadron identification up to \sim 50 GeV (RICH-1)
- Electromagnetic and hadron calorimetry
- Fast DAQ and high trigger rate capabilities, allowing for high beam intensities

- Beam: 190 GeV negative hadrons
 - \sim 96% π^- , \sim 3.5% K^- , \sim 0.5% \overline{p}
- Beam particle identification by means of CEDAR counters
- Beam intensity: ~5⋅10⁶ had/s (10s bounches every 40s)
- Target: liquid hydrogen, 40 cm long
- Luminosity: 0.15 pb⁻¹/day
- Two-stage magnetic spectrometer with excellent momentum resolution
- Hadron identification up to \sim 50 GeV (RICH-1)
- Electromagnetic and hadron calorimetry
- Fast DAQ and high trigger rate capabilities, allowing for high beam intensities

- Beam: 190 GeV negative hadrons \sim 96% π^- , \sim 3.5% K^- , \sim 0.5% \overline{p}
- Beam particle identification by means of CEDAR counters
- Beam intensity: ~5⋅10⁶ had/s (10s bounches every 40s)
- Target: liquid hydrogen, 40 cm long
- Luminosity: 0.15 pb⁻¹/day
- Two-stage magnetic spectrometer with excellent momentum resolution
- Hadron identification up to \sim 50 GeV (RICH-1)
- Electromagnetic and hadron calorimetry
- Fast DAQ and high trigger rate capabilities, allowing for high beam intensities

- Beam: 190 GeV negative hadrons
- \sim 96% π^- , \sim 3.5% K^- , \sim 0.5% \overline{p}
- Beam particle identification by means of CEDAR counters
- Beam intensity: ~5⋅10⁶ had/s (10s bounches every 40s)
- Target: liquid hydrogen, 40 cm long
- Luminosity: 0.15 pb⁻¹/day
- Two-stage magnetic spectrometer with excellent momentum resolution
- Hadron identification up to ~ 50 GeV (RICH-1)
- Electromagnetic and hadron calorimetry
- Fast DAQ and high trigger rate capabilities, allowing for high beam intensities

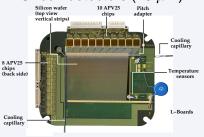
- Beam: 190 GeV negative hadrons
- \sim 96% π^- , \sim 3.5% K^- , \sim 0.5% \overline{p}
- Beam particle identification by means of CEDAR counters
- Beam intensity: ~5⋅10⁶ had/s (10s bounches every 40s)
- Target: liquid hydrogen, 40 cm long
- Luminosity: 0.15 pb⁻¹/day
- Two-stage magnetic spectrometer with excellent momentum resolution
- Hadron identification up to ~ 50 GeV (RICH-1)
- Electromagnetic and hadron calorimetry
- Fast DAQ and high trigger rate capabilities, allowing for high beam intensities

- Beam: 190 GeV negative hadrons
 - \sim 96% π^- , \sim 3.5% K^- , \sim 0.5% \overline{p}
- Beam particle identification by means of CEDAR counters
- Beam intensity: ~5⋅10⁶ had/s (10s bounches every 40s)
- Target: liquid hydrogen, 40 cm long
- Luminosity: 0.15 pb⁻¹/day
- Two-stage magnetic spectrometer with excellent momentum resolution
- Hadron identification up to ~ 50 GeV (RICH-1)
- Electromagnetic and hadron calorimetry
- Fast DAQ and high trigger rate capabilities, allowing for high beam intensities

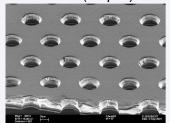
- General pourpose spectrometer
 - Charged and neutral decay modes are accessible
 - Data from central production and diffractive scattering can be collected in parallel
- Large angle acceptance:
 - ±180 mrad for charged particles
 - ±140 mrad for gammas
- Wide kinematical coverage:
 - Full charged particle tracking up to the beam region
 - Good momentum determination for 1 GeV/c and above
- Data with pion and kaon beams are collected in parallel

- General pourpose spectrometer
 - Charged and neutral decay modes are accessible
 - Data from central production and diffractive scattering can be collected in parallel
- Large angle acceptance:
 - ±180 mrad for charged particles
 - ±140 mrad for gammas
- Wide kinematical coverage:
 - Full charged particle tracking up to the beam region
 - Good momentum determination for 1 GeV/c and above
- Data with pion and kaon beams are collected in parallel

- General pourpose spectrometer
 - Charged and neutral decay modes are accessible
 - Data from central production and diffractive scattering can be collected in parallel
- Large angle acceptance:
 - ±180 mrad for charged particles
 - ±140 mrad for gammas
- Wide kinematical coverage:
 - Full charged particle tracking up to the beam region
 - Good momentum determination for 1 GeV/c and above
- Data with pion and kaon beams are collected in parallel



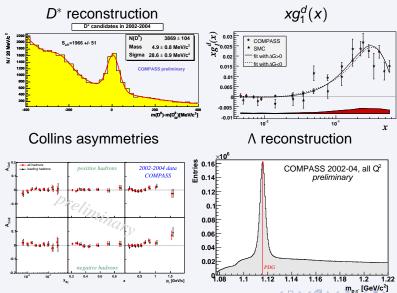
- General pourpose spectrometer
 - Charged and neutral decay modes are accessible
 - Data from central production and diffractive scattering can be collected in parallel
- Large angle acceptance:
 - ±180 mrad for charged particles
 - ±140 mrad for gammas
- Wide kinematical coverage:
 - Full charged particle tracking up to the beam region
 - Good momentum determination for 1 GeV/c and above
- Data with pion and kaon beams are collected in parallel

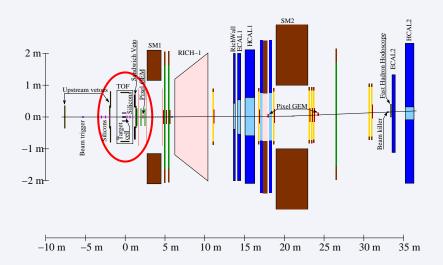


COMPASS tracking detectors (not complete...)

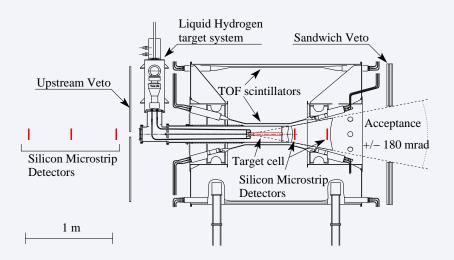
Silicon detectors (10 μ m)

GEMs (70 μ m)

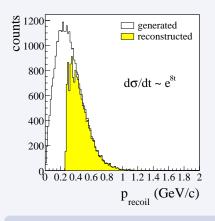

Micromegas (90 μ m)

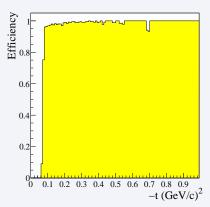

Straws (190 μ m)

Selected COMPASS muon beam results



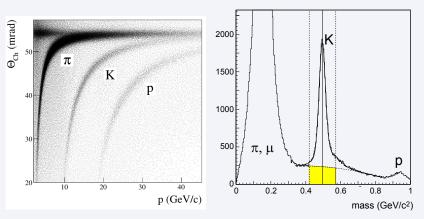
Target and target region



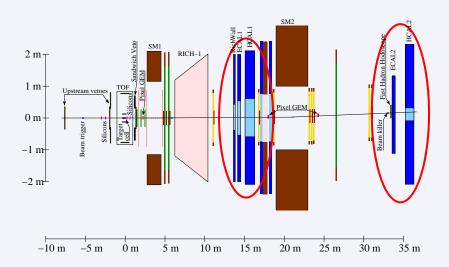

Target and target region

Detection of target recoil protons

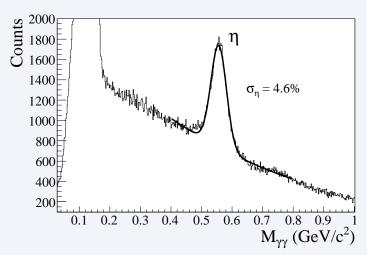
Simulated recoil protons from diffractive π^-p scattering


Full acceptance for $-t \gtrsim 0.06 \text{ (GeV/}c)^2$

Hadron identification


Hadron identification from RICH-1, 2004 muon beam data

 π – K separation between \sim 10 GeV/c and \sim 45 GeV/c


Electromagnetic calorimetry

Electromagnetic calorimetry

2γ invariant mass reconstructed in ECAL2, 2004 hadron beam

Some results of CP & DP Monte Carlo simulations

- Full simulation of COMPASS detector response and event reconstruction was performed
- Some selected channels of central production and diffractive scattering studied:
 - Central production $(\pi^- p \rightarrow \pi^- X p_s)$:
 - $X \to \eta \eta$, $M_X = 1.5, 2, 2.5 \text{ GeV/}c^2$
 - $X \rightarrow 2\pi^{+}2\pi^{-}, M_X = 1.0, 1.5, 2 \text{ GeV/}c^2$
 - Diffractive scattering $(\pi^- p \rightarrow X p_s)$:
 - $X \to \pi^+ 2\pi^-, M_X = 1.6 \text{ GeV}/c^2$
 - $X \to \eta \pi$, $M_X = 2.0 \text{ GeV}/c^2$

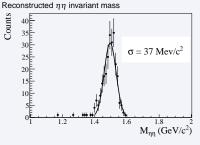
Mass resolutions and reconstruction efficiencies

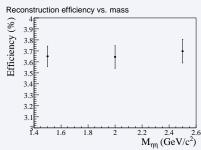
Some results of CP & DP Monte Carlo simulations

- Full simulation of COMPASS detector response and event reconstruction was performed
- Some selected channels of central production and diffractive scattering studied:
 - Central production ($\pi^- p \rightarrow \pi^- X p_s$):
 - $X \rightarrow \eta \eta$, $M_X = 1.5, 2, 2.5 \text{ GeV}/c^2$
 - $X \rightarrow 2\pi^{+}2\pi^{-}$, $M_X = 1.0, 1.5, 2 \text{ GeV}/c^2$
 - Diffractive scattering ($\pi^- p \rightarrow X p_s$):
 - $X \to \pi^+ 2\pi^-$, $M_X = 1.6 \text{ GeV}/c^2$
 - $X \rightarrow \eta \pi$, $M_X = 2.0 \text{ GeV}/c^2$

Mass resolutions and reconstruction efficiencies

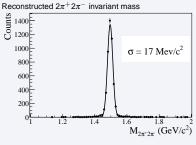
Some results of CP & DP Monte Carlo simulations

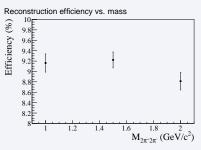

- Full simulation of COMPASS detector response and event reconstruction was performed
- Some selected channels of central production and diffractive scattering studied:
 - Central production ($\pi^- p \rightarrow \pi^- X p_s$):
 - $X \rightarrow \eta \eta$, $M_X = 1.5, 2, 2.5 \text{ GeV}/c^2$
 - $X \rightarrow 2\pi^{+}2\pi^{-}$, $M_X = 1.0, 1.5, 2 \text{ GeV}/c^2$
 - Diffractive scattering ($\pi^- p \rightarrow X p_s$):
 - $X \to \pi^+ 2\pi^-$, $M_X = 1.6 \text{ GeV}/c^2$
 - $X \rightarrow \eta \pi$, $M_X = 2.0 \text{ GeV/}c^2$


Mass resolutions and reconstruction efficiencies

Central $\eta \eta$ production (simulated)

$$\pi^- p \rightarrow \pi^- X p_s, X \rightarrow \eta \eta, \eta \rightarrow 2\gamma$$

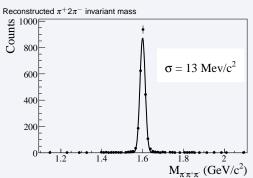


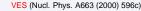

- γs from η decays detected in ECAL1&2
- Reconstruction efficiency is $\sim 3.5\%$ up to 2.5 GeV/ c^2
- We expect $\sim 100 f_0(1500)/day$ in $\eta \eta$ channel

 $\sigma(f_0(1500)) \simeq 3~\mu$ b, $BR(f_0(1500) \rightarrow \eta \eta) \simeq 0.05$, $BR(\eta \rightarrow 2\gamma) = 0.39$

Central $2\pi^+2\pi^-$ production (simulated)

$$\pi^- \
ho \
ightarrow \ \pi^- \ X \
ho_s, \ X \
ightarrow \ 2\pi^+ 2\pi^-$$


- Reconstruction efficiency is $\sim 9\%$ up to 2.0 GeV/ c^2
- We expect $\sim 6 \cdot 10^3 f_0(1500)$ /day in $2\pi^+ 2\pi^-$ channel


$$\sigma(f_0(1500)) \simeq 3 \ \mu \text{b}, \ BR(f_0(1500) \to 2\pi^+ 2\pi^-) \simeq 0.16$$

Diffractive $\pi^+2\pi^-$ production (simulated)

$$\pi^-~
ho~
ightarrow~X(1600)~
ho_s,~X(1600)~
ightarrow~\pi^+2\pi^-$$

- ullet Geometrical acceptance is \sim 100%
- ullet Reconstruction efficiency is $\sim 20\%$
- We expect $\gtrsim 6 \cdot 10^6$ events/day in $\pi^+ 2\pi^-$ channel

- 1 Introduction
- Experimental evidences of Glueballs and Hybrids
- Meson spectroscopy @ COMPASS
- 4 Conclusions

Identification of glueballs and hybrids is still an open issue

- Several questions remain, among which:
 - Existence/assignment of the scalar glueball is the $f_0(1500)$ interpretation correct?
 - Systematic study of the \sim 2 GeV/ c^2 mass region
 - Systematic study of the J^{PC} = 1⁻⁺ mesons, to identify all states (hybrids, 4-qarks, ...)
- COMPASS can contribute to all those question, collecting in parallel:
 - data with π^- and K^- beams UNIQUE!
 - data for central and peripheral collisions

with a state-of-the-art experimental appartus and DAC

• First h^-p run is planned for Autumn this year

- Identification of glueballs and hybrids is still an open issue
- Several questions remain, among which:
 - Existence/assignment of the scalar glueball is the $f_0(1500)$ interpretation correct?
 - Systematic study of the ~ 2 GeV/c² mass region
 - Systematic study of the J^{PC} = 1⁻⁺ mesons, to identify all states (hybrids, 4-qarks, ...)
- COMPASS can contribute to all those question, collecting in parallel:
 - data with π^- and K^- beams UNIQUE!
 - data for central and peripheral collisions

• First *h*⁻*p* run is planned for Autumn this year

- Identification of glueballs and hybrids is still an open issue
- Several questions remain, among which:
 - Existence/assignment of the scalar glueball is the $f_0(1500)$ interpretation correct?
 - Systematic study of the ~ 2 GeV/c² mass region
 - Systematic study of the J^{PC} = 1⁻⁺ mesons, to identify all states (hybrids, 4-qarks, ...)
- COMPASS can contribute to all those question, collecting in parallel:
 - data with π^- and K^- beams UNIQUE!
 - data for central and peripheral collisions
 - with a state-of-the-art experimental appartus and DAQ
- First h^-p run is planned for Autumn this year

- Identification of glueballs and hybrids is still an open issue
- Several questions remain, among which:
 - Existence/assignment of the scalar glueball is the $f_0(1500)$ interpretation correct?
 - Systematic study of the ~ 2 GeV/c² mass region
 - Systematic study of the JPC = 1⁻⁺ mesons, to identify all states (hybrids, 4-qarks, ...)
- COMPASS can contribute to all those question, collecting in parallel:
 - data with π^- and K^- beams UNIQUE!
 - data for central and peripheral collisions
 - with a state-of-the-art experimental appartus and DAQ
- First h^-p run is planned for Autumn this year

- Identification of glueballs and hybrids is still an open issue
- Several questions remain, among which:
 - Existence/assignment of the scalar glueball is the $f_0(1500)$ interpretation correct?
 - Systematic study of the ~ 2 GeV/c² mass region
 - Systematic study of the J^{PC} = 1⁻⁺ mesons, to identify all states (hybrids, 4-qarks, ...)
- COMPASS can contribute to all those question, collecting in parallel:
 - data with π^- and K^- beams UNIQUE!
 - data for central and peripheral collisions

• First h-p run is planned for Autumn this year

- Identification of glueballs and hybrids is still an open issue
- Several questions remain, among which:
 - Existence/assignment of the scalar glueball is the $f_0(1500)$ interpretation correct?
 - Systematic study of the ~ 2 GeV/c² mass region
 - Systematic study of the J^{PC} = 1⁻⁺ mesons, to identify all states (hybrids, 4-qarks, ...)
- COMPASS can contribute to all those question, collecting in parallel:
 - data with π⁻ and K⁻ beams UNIQUE!
 - data for central and peripheral collisions

• First *h*⁻*p* run is planned for Autumn this year

- Identification of glueballs and hybrids is still an open issue
- Several questions remain, among which:
 - Existence/assignment of the scalar glueball is the $f_0(1500)$ interpretation correct?
 - Systematic study of the ~ 2 GeV/c² mass region
 - Systematic study of the JPC = 1⁻⁺ mesons, to identify all states (hybrids, 4-qarks, ...)
- COMPASS can contribute to all those question, collecting in parallel:
 - data with π⁻ and K⁻ beams UNIQUE!
 - data for central and peripheral collisions

• First h^-p run is planned for Autumn this year

