Transverse Spin Phenomenology

An Overview

Vincenzo Barone

Università del Piemonte Orientale "A. Avogadro" and Gruppo Collegato INFN, Alessandria, Italy

Outline

- 1. Transverse spin effects: where we stand, where we are going
- 2. The three main distribution functions:

Transversity, Sivers, Boer-Mulders

- 3. The explored territory ... Collins and Sivers effects in semiinclusive DIS on $p^{\uparrow}, D^{\uparrow}$
- and its surroundings
 Neutron target, other observables, azimuthal asymmetries and Boer-Mulders effect
- 5. The unexplored territory: Drell-Yan processes
- 6. Concluding remarks

Transverse spin effects: generalities

Spin four-vector:
$$S^{\mu}=\lambda\,\frac{P^{\mu}}{M}+S^{\mu}_{\perp}\,, \qquad S^{\mu}S_{\mu}=-1$$

The spin transverse component of fast particles is suppressed by M/E

Naïve conclusion: transverse spin effects are irrelevant at high energies

In inclusive DIS transverse spin effects are indeed subdominant (twist-3):

Quark-parton model:
$$g_1(x) + g_2(x) = \frac{1}{2} \sum_a e_a^2 g_T^a(x)$$

$$g_T(x) = g_T^{WW}(x)$$
 [twist 2] + $\tilde{g}_T(x)$ [twist 3]

Recent data from JLab at $Q^2\sim 1$ GeV 2 [JLab E97-103] show evidence of higher-twist effects $(g_2\neq g_2^{WW})$

There are high-energy hadronic processes where transverse polarization effects are unsuppressed and dominant: e.g., transversely polarized Drell-Yan production [Ralston and Soper 1979; Artru and Mekhfi 1990; Jaffe and Ji 1991; Cortes, Pire and Ralston 1992]

A new leading twist quark distribution function: transversity distribution

Other transverse spin effects arise from various k_T -dependent distributions [Kotzinian; Mulders et al.; ... 1993-98]

SIDIS experiments with transversely polarized targets (p^{\uparrow} , D^{\uparrow}) [HERMES, COMPASS]

Transverse spin phenomena: where we stand

Transverse single-spin asymmetries well established and sizable

This is a highly non-trivial result:

- Initial-state interactions generate unsuppressed spin asymmetries
- Final-state interactions do not wash out spin effects

First extractions of Sivers function and transversity from data

Transverse spin phenomena: where we are going

For a truly global analysis of transverse spin data we need:

- Many observables (i.e., a large variety of processes and targets) and a limited set of distribution functions to be fitted $(h_1, f_{1T}^{\perp}, h_1^{\perp}, H_1^{\perp})$
 - ightarrow Warning: any experimental preanalysis should be consistent with subsequent fits
- A general theoretical framework, comprising:
 - A choice of functional forms for the x and k_T -dependence: e.g. $x^{\alpha}(1-x)^{\beta}$ and Gaussians in k_T
 - Physical constraints (positivity, Soffer bound, ...)
 - A number of model assumptions (relation between h_1 and g_1 , large- N_c expectations, lattice results, ...), to be progressively reduced
 - $-\ {\it Q}^2$ evolution of distributions and full theoretical understanding of processes

The three main distribution functions related to transverse spin

- Transversity distribution $h_1(x)$
- \bullet Sivers distribution $f_{1T}^{\perp}(x,k_T^2)$
- \bullet Boer–Mulders distribution $h_1^\perp(x,k_T^2)$

Related quantity (couples to h_1): Collins fragmentation function $H_1^{\perp}(z, P_T^2)$

Transversity: a summary

Transversely polarized quarks $(\uparrow\downarrow)$ in a transversely polarized proton (\uparrow) :

$$h_1(x) = q_{\uparrow}(x) - q_{\downarrow}(x)$$
 [also called $\Delta_T q(x)$]

Field—theoretical definition:

$$h_1(x) = \int \frac{\mathrm{d}\xi^-}{4\pi} \,\mathrm{e}^{\mathrm{i}xP^+\xi^-} \left\langle P, S | \overline{\psi}(0) \gamma^+ \gamma_\perp \gamma_5 \psi(\xi) | P, S \right\rangle \Big|_{\xi^+ = \vec{\xi}_\perp = 0}$$

Tensor charge: first moment of $h_1 - \overline{h}_1$

$$\langle P, S | \overline{\psi}_q(0) i \sigma^{\mu\nu} \gamma_5 \psi_q(0) | P, S \rangle = 2 \, \delta q \, S^{[\mu} P^{\nu]} \,, \quad \delta q = \int_0^1 \mathrm{d}x \, [h_1^q(x) - \overline{h}_1^q(x)]$$

Leading twist: unsuppressed by powers of 1/Q

Chirally odd: non diagonal in helicity basis

Non-singlet evolution: no gluonic transversity

Soffer inequality: $|h_1(x)| \leq \frac{1}{2} [f_1(x) + g_1(x)]$

k_T -dependent distributions

$$\mathcal{P}_{q/p}(x, \boldsymbol{k}_T) = \int \frac{\mathrm{d}\xi^-}{4\pi} \int \frac{\mathrm{d}\boldsymbol{\xi}_T}{(2\pi)^2} \,\mathrm{e}^{\mathrm{i}xP^+\xi^- - \mathrm{i}\boldsymbol{k}_T \cdot \xi_T} \langle P, S | \overline{\psi}(\xi) \gamma^+ \boldsymbol{W}(0, \boldsymbol{\xi}) \psi(0) | P, S \rangle$$

Wilson line $W_C = P \exp \left[-ig \int_C A(x) \cdot dx\right]$: path C depends on the process

SIDIS:
$$W(0,\xi) = W(0^-, 0_T; \infty^-, 0_T)W(\infty^-, 0_T; \infty^-, \xi_T)W(\infty^-, \xi_T; \xi^-, \xi_T)$$

In light-cone gauge the potential at ∞^- does not vanish [Belitsky, Ji & Yuan 2003]

The "T-odd" couple:
$$f_{1T}^{\perp}$$
 and h_1^{\perp}

Transverse spin naturally couples to transverse momenta. Many possible correlations between k_T , S_T and S_{qT} giving rise to single-spin asymmetries.

$$f_{1T}^{\perp}$$
 and h_1^{\perp} measure the correlations: $(\hat{m P} imes {m k}_T) \cdot {m S}_T$ and $(\hat{m P} imes {m k}_T) \cdot {m S}_{qT}$

Sivers distribution function: azimuthal asymmetry of unpolarized quarks inside a transversely polarized proton

$$\mathcal{P}_{q/p\uparrow}(x, \boldsymbol{k}_T) - \mathcal{P}_{q/p\uparrow}(x, -\boldsymbol{k}_T) = \frac{(\boldsymbol{k}_T \times \hat{\boldsymbol{P}}) \cdot \boldsymbol{S}_T}{M} f_{1T}^{\perp}(x, \boldsymbol{k}_T^2)$$

Boer-Mulders distribution function: spin asymmetry of transversely polarized quarks inside an unpolarized proton

$$\mathcal{P}_{q^{\uparrow}/p}(x, \boldsymbol{k}_T) - \mathcal{P}_{q^{\downarrow}/p}(x, \boldsymbol{k}_T) = \frac{(\boldsymbol{k}_T \times \hat{\boldsymbol{P}}) \cdot \boldsymbol{S}_{qT}}{M} h_1^{\perp}(x, \boldsymbol{k}_T^2)$$

An explicit calculation [Brodsky, Hwang & Schmidt 2002] shows that f_{1T}^\perp and h_1^\perp are generated by gluon exchange between the struck quark and the spectator:

Time reversal invariance implies [Collins 2002]

$$f_{1T}^{\perp}(x, \boldsymbol{k}_T^2)_{\text{SIDIS}} = -f_{1T}^{\perp}(x, \boldsymbol{k}_T^2)_{\text{DY}} \,, \quad h_1^{\perp}(x, \boldsymbol{k}_T^2)_{\text{SIDIS}} = -h_1^{\perp}(x, \boldsymbol{k}_T^2)_{\text{DY}} \,.$$

Can be checked by comparing SIDIS to single-polarized DY

What we know about transversity

- Models show that $h_1 \simeq g_1$ at very low scales (< 1 GeV)
 - In NRQM, $h_1=g_1$ exactly. In relativistic models the difference is due to lower components of wf's: h_1 measures relativistic effects
- Sign and magnitude of antiquark distributions more uncertain (But even for helicity densities the situation is unsettled)
- QCD evolution of h₁ known up to NLO
 - No mixing with gluons
 - Tensor charges decrease with Q^2
 - Evolution of h_1 different from that of g_1 especially at low x
- First extraction of h_1 (in combination with H_1^{\perp}) from a fit to HERMES, COMPASS, BELLE data [Anselmino et al. 2006]

Tensor charges in various models

NRQM: Non-Relativistic Quark Model

MIT: MIT Bag Model

CDM: Color Dielectric Model

CQSM1: Chiral Quark Soliton Model 1 CQSM2: Chiral Quark Soliton Model 2

CQM: Chiral Quark Model

LC: Light-Cone Model

SM: Spectator Model

LAT: Lattice QCD

$$\delta u \sim 0.7 - 1.0, \ \delta d \sim -(0.1 - 0.4) \ \text{at} \ Q^2 = 10 \ \text{GeV}^2$$

Using the GRV parametrizations of pdf's to model transversity

$$h_1 = \frac{1}{2}(f_1 + g_1)$$
 at $Q_0^2 = 0.40 \text{ GeV}^2$

What we know about the Sivers function

- Spectator models: simplest way to construct f_{1T}^{\perp} , but many free parameters (masses, nucleon-quark-diquark vertices, average transverse momentum) Problem: $f_{1T}^{\perp d}$ comes out too small (compared to data)
- Large- N_c prediction: isoscalar f_{1T}^{\perp} suppressed

$$f_{1T}^{\perp u} \simeq -f_{1T}^{\perp d}$$

- Transverse distortion of pdf's in impact parameter space [Burkardt] Sivers function opposite in sign to the anomalous magnetic moment $f_{1T}^{\perp u} < 0$, $f_{1T}^{\perp d} > 0$ (confirmed by data)
- \bullet f_{1T}^{\perp} can be extracted from HERMES and COMPASS single-spin asymmetry measurements

What we know about the Boer-Mulders function

- Only one class of data pertinent to h_1^\perp : NA10 and E615 measurements of $\cos 2\phi$ asymmetry in $\pi^- N \to \mu^+ \mu^- X$
- Spectator models: $h_1^{\perp}=f_{1T}^{\perp}$ if only scalar diquarks are considered. k_T -dependence may be adjusted to the Q_T behavior of $\cos 2\phi$ data
- Large- N_c prediction: isovector h_1^{\perp} suppressed

$$h_1^{\perp u} \simeq h_1^{\perp d}$$

- \bullet Burkardt's approach: h_1^\perp related to the first moment of some GPD's Lattice results: indication for $h_1^{\perp u}<0$
- Plausible working hypothesis:

$$h_1^{\perp u} = f_{1T}^{\perp u}, \quad h_1^{\perp d} = -f_{1T}^{\perp d}$$

The explored territory

Pion leptoproduction from a transversely polarized target:

$$e p^{\uparrow} (D^{\uparrow}) \rightarrow e' \pi X$$

Collins and Sivers effects with different angular distributions

Another explored land: $p p^{\uparrow} \rightarrow h X$

Large SSA's, but theoretically complicated and unclear

Semi-inclusive DIS with a transversely polarized target

$$W^{\mu\nu} \sim \text{Tr}\left[\Phi \gamma^{\mu} \Xi \gamma^{\nu}\right]$$

 Ξ fragmentation matrix

Two sources of single-spin transverse asymmetries:

- azimuthal asymmetry of unpolarized quarks inside the transversely polarized proton (Sivers effect) $[f_1 \text{ couples to } f_{1T}^{\perp}]$
- spin asymmetry of transversely polarized quarks fragmenting into an unpolarized hadron (Collins effect) $[h_1 \text{ couples to } H_1^{\perp}]$

Collins fragmentation function:

$$\mathcal{N}_{h/q}{}^{\uparrow}(z,oldsymbol{P}_{hT})-\mathcal{N}_{h/q}{}^{\downarrow}(z,oldsymbol{P}_{hT})=rac{(\hat{oldsymbol{\kappa}}_{T} imesoldsymbol{P}_{hT})\cdotoldsymbol{S}_{qT}}{zM_{h}}\,H_{1}^{\perp}(z,oldsymbol{P}_{hT}^{2})$$

Transversely polarized pion leptoproduction cross section:

$$\begin{split} \mathrm{d}\sigma_{UT} &\sim A(y)\,\mathcal{I}\left[\frac{\pmb{\kappa}_T\cdot\hat{\pmb{P}}_{hT}}{M_h}\,h_1^a\,H_1^{\perp a}\right]\,\sin(\phi_h+\phi_S) \quad \text{Collins} \\ &+B(y)\,\mathcal{I}\left[\frac{\pmb{k}_T\cdot\hat{\pmb{P}}_{hT}}{M_h}\,f_{1T}^{\perp a}\,D_1^a\right]\,\sin(\phi_h-\phi_S) \quad \text{Sivers} \\ &+\sin(3\phi_h-\phi_S) \quad \text{term} \end{split}$$

Convolutions defined as:

$$\mathcal{I}[f D] \equiv \int d^2 \boldsymbol{k}_T \int d^2 \boldsymbol{\kappa}_T \, \delta^2(\boldsymbol{k}_T - \boldsymbol{P}_{hT}/z - \boldsymbol{\kappa}_T) f(x, \boldsymbol{k}_T^2) \, D(z, \boldsymbol{\kappa}_T^2)$$

Assuming Gaussian dependence on transverse momenta, $\mathcal{I}\left[f\,D\right]\propto f\,D$

Angular distributions disentangled by taking azimuthal moments, e.g.:

$$\langle \sin(\phi_h + \phi_S) \rangle \equiv \frac{\int d\phi_h d\phi_S \sin(\phi_h + \phi_S) \left[d\sigma(\phi_h, \phi_S) - d\sigma(\phi_h, \phi_S + \pi) \right]}{\int d\phi_h d\phi_S \left[d\sigma(\phi_h, \phi_S) + d\sigma(\phi_h, \phi_S + \pi) \right]}$$

Collins asymmetries

Transversity couples to Collins function:

$$A_T^{\pi^+}(p) \sim 4 \, h_1^u \, H_1^{\perp {\sf fav}} + h_1^d \, H_1^{\perp {\sf unf}}$$
 $A_T^{\pi^-}(p) \sim 4 \, h_1^u \, H_1^{\perp {\sf unf}} + h_1^d \, H_1^{\perp {\sf fav}}$

Indications from data:

- ullet h_1^u positive, h_1^d negative
- ullet Large unfavored Collins functions (with $H_1^{\perp {
 m fav}}$ negative)

Independent information on H_1^{\perp} :

 e^+e^- data at b-factories: direct measurement of H_1^\perp [Belle]

Transversity from a fit to HERMES, COMPASS and BELLE data

[Anselmino et al. 2007, see Prokudin's talk]

Transversity parametrized as $h_1(x) = \frac{1}{2} N x^{\alpha} (1-x)^{\beta} \left[f_1(x) + g_1(x) \right]$

Central values much below the Soffer bound

Sivers function from fits to HERMES and COMPASS data

[Anselmino et al.] vs. [Collins et al.]

[Anselmino et al.] vs. [Vogelsang & Yuan]

$$f_{1T}^{\perp}(x, k_T^2) = Nx^a (1-x)^b \frac{MM_0}{k_T^2 + M_0^2} f_1(x, k_T^2)$$

Gaussian k_T dependence with $\langle k_T^2 \rangle = 0.25 \; \mathrm{GeV}^2$

On the edge of the explored territory

Neutron target: $e n^{\uparrow} \rightarrow e' \pi X$

Other occurrences of transversity in polarized SIDIS

Azimuthal asymmetries in unpolarized SIDIS

Transversely polarized neutron target [JLab exp. E03-004]

Kinematics: x = 0.19 - 0.34, $Q^2 = 1.7 - 2.7 \text{ GeV}^2$

Collins asymmetries:

$$A_T^{\pi^+}(n) \sim 4 \, h_1^d \, H_1^{\perp {\sf fav}} + h_1^u \, H_1^{\perp {\sf unf}}$$
 $A_T^{\pi^-}(n) \sim 4 \, h_1^d \, H_1^{\perp {\sf unf}} + h_1^u \, H_1^{\perp {\sf fav}}$

Combining p and n, π^+ and π^- one can disentangle h_1^u , h_1^d , $H_1^{\perp {\rm fav}}$ and $H_1^{\perp {\rm unf}}$

Other transverse spin observables in $e^{(\to)}p^{\uparrow(\to)} \to e'\pi X$

$oldsymbol{P}_{hT}$ distributions:

- Unpolarized lepton beam: $d\sigma_{UL} \sim h_{1L}^{\perp} \otimes H_1^{\perp} \sin 2\phi_h$ Collins effect with longitudinally polarized target
- Longitudinally polarized lepton beam: $d\sigma_{LT} \sim g_{1T} \otimes H_1^{\perp} \cos(\phi_h \phi_S)$ Longitudinally polarized quarks inside a transversely polarized hadron

Integrated cross-sections (at twist 3):

- Unpolarized lepton beam: $d\sigma_{UT} \sim h_1(x) \, \widetilde{H}(z) \, \sin \phi_S$ h_1 couples to the twist-3 fragmentation function \widetilde{H}
- Longitudinally polarized lepton beam: $d\sigma_{LT} \sim h_1(x) \, \widetilde{E}(z) \, \sin \phi_S$ h_1 couples to the twist-3 fragmentation function \widetilde{E}

The distributions g_{1T} and h_{1L}^{\perp} are related to g_1 and h_1 , respectively:

$$\frac{g_{1T}^{(1)}(x)}{x} = \int_{x}^{1} \frac{\mathrm{d}y}{y} g_{1}(y) - \frac{m}{M} \int_{x}^{1} \frac{\mathrm{d}y}{y^{2}} h_{1}(x) - \int_{x}^{1} \frac{\mathrm{d}y}{y} \tilde{g}_{T}(x)$$

$$\frac{h_{1L}^{\perp(1)}(x)}{x^{2}} = -\int_{x}^{1} \frac{\mathrm{d}y}{y} h_{1}(y) + \frac{m}{M} \int_{x}^{1} \frac{\mathrm{d}y}{y^{3}} g_{1}(x) + \int_{x}^{1} \frac{\mathrm{d}y}{y^{2}} \tilde{h}_{L}(x)$$

Neglecting quark mass terms and twist-3 contributions (related to quark-gluon correlators) we get Wandzura-Wilczek-type relations

Azimuthal asymmetries in unpolarized SIDIS

The Boer-Mulders function h_1^\perp produces azimuthal asymmetries in unpolarized processes

Observed $\cos 2\phi_h$ asymmetries in πN Drell-Yan (NA10) and in SIDIS (EMC, ZEUS) at large Q^2

Sources of $\cos 2\phi_h$ asymmetries in SIDIS:

- Non-collinear kinematics (Cahn effect, twist 3)
- Boer-Mulders mechanism (leading twist)
- Perturbative gluon radiation

Cahn + Boer-Mulders effects:

$$d\sigma|_{\cos 2\phi} \sim \mathcal{I}\left[\frac{2(\boldsymbol{k}_T \cdot \hat{\boldsymbol{P}}_{hT})^2 - \boldsymbol{k}_T^2}{Q^2} f_1 D_1\right] \cos 2\phi_h$$

$$+ \mathcal{I}\left[\frac{2(\boldsymbol{k}_T \cdot \hat{\boldsymbol{P}}_{hT})(\kappa_T \cdot \hat{\boldsymbol{P}}_{hT}) - \boldsymbol{k}_T \cdot \boldsymbol{\kappa}_T}{zMM_h} h_1^{\perp} H_1^{\perp}\right] \cos 2\phi_h$$

Perturbative contribution:

Predictions for $\cos 2\phi$ asymmetry in SIDIS

[VB, Ma, Prokudin 2007]

Assume $h_1^{\perp u}=f_{1T}^{\perp u}$, $h_1^{\perp d}=-f_{1T}^{\perp d}$, with f_{1T}^{\perp} and H_1^{\perp} from fits to data

Full = Cahn (HT) + Boer-Mulders + NLO QCD

Full = Cahn (HT) + Boer-Mulders + NLO QCD

$\cos 2\phi$ asymmetry at large Q^2 (theory vs. ZEUS data)

Fully perturbative effect

Two different assumptions for the sign of $h_1^{\perp d}$:

$$h_1^{\perp d} = -f_{1T}^{\perp d} < 0 \text{ vs. } h_1^{\perp d} = f_{1T}^{\perp d} > 0$$

Comparison of π^+ and π^- asymmetries can give information on the sign of $h_1^{\perp d}$

The unexplored territory

Transverse spin effects in Drell-Yan processes at moderate energies

Drell-Yan dilepton production

At leading order: $q\bar{q}$ annihilation

$$z = 1$$
, $x_1 x_2 = \frac{M^2}{s}$, $y = \frac{1}{2} \ln \frac{x_1}{x_2}$ (rapidity)

Geometry and Kinematics of DY

Collins-Soper frame:

 ϕ angle between lepton and hadron plane, ${\pmb q}_T$ transverse momentum of virtual photon Relation between transverse momenta: ${\pmb p}_T+{\pmb k}_T={\pmb q}_T$

GSI-HESR $(\bar{p}p)$:

Collider: \bar{p} beam 15 Gev, p beam 3.5 GeV, $s=4E_pE_{\bar{p}}=200$ GeV²

Fixed target: \bar{p} beam 15-40 GeV, $s=2ME_{\bar{p}}$ =30-80 GeV²

COMPASS (πp): π beam 50-100 GeV, s=100-200 GeV²

J-PARC (pp): p beam 50 GeV, $s = 100 \text{ GeV}^2$

Correlations between x_1, x_2, M^2, s

$$s = 45 \text{ GeV}^2$$
, $2 \text{ GeV} < M < 4 \text{ GeV}$

$$s=200~{
m GeV^2}$$
, $2~{
m GeV} \leq M \leq 6~{
m GeV}$

M must be large enough to apply pQCD But production rates fall off rapidly with M

Processes and observables

Double polarization $(\bar{p}^{\uparrow}p^{\uparrow}, p^{\uparrow}p^{\uparrow})$

$$\frac{d\sigma}{dy \, d\phi} \sim h_1(x_1) \, h_1(x_2) \, \cos 2(\phi - \phi_{S_1} - \phi_{S_2})$$

Single polarization $(\bar{p}p^{\uparrow}, pp^{\uparrow}, \pi p^{\uparrow})$

$$\frac{\mathrm{d}\sigma}{\mathrm{d}y\,\mathrm{d}^2\boldsymbol{q}_T\,\mathrm{d}\phi} \sim f_1(x_1,k_T^2)\,f_{1T}^{\perp}(x_2,k_T^2)\,\sin(\phi-\phi_S) + h_1^{\perp}(x_1,k_T^2)\,h_1(x_2,k_T^2)\,\sin(\phi+\phi_S)$$

No polarization ($\bar{p}p$, pp, πp)

$$\frac{\mathrm{d}\sigma}{\mathrm{d}y\,\mathrm{d}^2\boldsymbol{q}_T\,\mathrm{d}\phi} \sim h_1^{\perp}(x_1,k_T^2)\,h_1^{\perp}(x_2,k_T^2)\,\cos 2\phi$$

Doubly polarized DY production

Double transverse asymmetry :
$$A_{TT}^{DY} = \frac{\mathrm{d}\sigma^{\uparrow\uparrow} - \mathrm{d}\sigma^{\uparrow\downarrow}}{\mathrm{d}\sigma^{\uparrow\uparrow} + \mathrm{d}\sigma^{\uparrow\downarrow}}$$

At leading order the hard subprocess is $q\bar{q}$ annihilation:

$$A_{TT}^{DY} \sim \frac{\sum_{q} e_q^2 h_{1q}(x_1, M^2) \bar{h}_{1q}(x_2, M^2) + [1 \leftrightarrow 2]}{\sum_{q} e_q^2 f_{1q}(x_1, M^2) \bar{f}_{1q}(x_2, M^2) + [1 \leftrightarrow 2]}$$

The asymmetry is completely determined by transversity

Predictions for $A_{TT}^{DY}(pp)$ at RHIC

LO at $\sqrt{s}=100~{\rm GeV}$ $h_1=g_1$ at $Q_0^2=0.23~{\rm GeV}^2$ [VB, Calarco & Drago 1997]

NLO at $\sqrt{s}=200~{\rm GeV}$ Soffer bound saturated at Q_0

[Martin et al. 1998]

At RHIC energies $A_{TT}^{DY}(pp)$ is expected to be small: $\sim 2-3\%$

Why RHIC transverse asymmetries are small:

- $\sqrt{s}=200$ GeV, M<10 GeV $\Rightarrow x_1x_2=M^2/s<2.5\times 10^{-3}$: low-x region is probed
- ullet Sea transversity distributions are small. The evolution of transversity is suppressed at low x

Two ways to improve the situation [VB, Calarco & Drago 1997]:

- Moderate energies: with $s\sim 100~{\rm GeV^2}$ and $M>4~{\rm GeV}$, one has $x_1x_2>0.15$ (intermediate-x region)
- Proton-antiproton scattering probes valence × valence

PAX: polarized \bar{p} colliding on polarized p at GSI-HESR [PAX, hep-ex/0505054]

$$s=45,200~{\rm GeV}^2\,, \quad M>2\,{\rm GeV}\,, \quad {\mathcal L}>10^{30}{\rm cm}^{-2}{\rm s}^{-1}$$

 A_{TT} turns out to be large, of order 0.3

LO calculation (M = 4 GeV) \Rightarrow

[Anselmino, VB, Drago, Nikolaev 2004]

For $p^{\uparrow}p^{\uparrow}$ DY at J-PARC asymmetries are expected to be smaller, but still sizable ($\sim 0.15\text{-}0.2$). Important information on signs of antiquark distributions

NLO predictions of $A_{TT}^{DY}(\bar{p}p)$

[VB et al. 2005]

Soft-gluon resummation modifies the results by 10~% only [Shimizu et al. 2005]

Leading order vs. Next-to-leading order

Perturbative corrections to the cross sections largely cancel in the ratio. Asymmetries are almost unaffected

Double transverse DY asymmetries are large, but production rates fall down rapidly for $M>3~{\rm GeV}$

 $\Rightarrow J/\psi$ production [Anselmino, VB, Drago, Nikolaev 2004]

- Comparison of J/ψ production in $\bar{p}p$ and pp collisions at $s=80~{\rm GeV^2}$ (SPS data) shows dominance of $\bar{q}q$ annihilation: $\sigma(\bar{p}p)\gg\sigma(pp)$
- $\bullet~$ The helicity structure of $q\bar{q}J/\psi$ is the same as $q\bar{q}\gamma^*$
- ullet Since the u sector dominates, the J/ψ coupling factorizes out

$$A_{TT}^{J/\psi} \sim \frac{h_{1u}(x_1, M_{\psi}^2) h_{1u}(x_2, M_{\psi}^2)}{f_{1u}(x_1, M_{\psi}^2) f_{1u}(x_2, M_{\psi}^2)}$$

[Anselmino, VB, Drago, Nikolaev 2004]

 $A_{TT}^{J/\psi} \sim 0.3$ (similar results by [Efremov, Goeke & Schweitzer 2004])

Unpolarized DY production

$$\frac{d\sigma}{d\Omega} \sim 1 + \lambda \cos^2 \theta + \mu \sin 2\theta \cos \phi + \frac{\nu}{2} \sin^2 \theta \cos 2\phi$$

NA10 and E615 results for $\pi^- N \to \mu^+ \mu^- X$:

$$\nu$$
 increasing with Q_T and large (~ 0.2 at $Q_T=2$ GeV for $E_\pi=194$ GeV)

Possible explanations:

- Gluon radiation: partonic asymmetry $\hat{\nu} \sim Q_T^2/(M^2+3Q_T^2/2)$ This contribution turns out to be small when pdf's are inserted
- Boer–Mulders mechanism (correlation between transverse spin and transverse momentum of quarks)

Boer-Mulders effect:

$$u \sim rac{\mathcal{I}\left[\left(2\,oldsymbol{k}_T\cdot\hat{oldsymbol{P}}_{hT}\,oldsymbol{p}_T\cdot\hat{oldsymbol{P}}_{hT}-oldsymbol{k}_T\cdotoldsymbol{p}_T
ight)h_1^{\perp}\,ar{h}_1^{\perp}
ight]}{\mathcal{I}\left[f_1\,ar{f}_1
ight]}$$

Assume $h_1^{\perp u}=f_{1T}^{\perp u}$, with f_{1T}^{\perp} from fits to Sivers asymmetry data, and $(\bar{h}_1^{\perp}/\bar{f}_1)_{\pi^-}=(h_1^{\perp}/f_1)_p \text{ for } u$ [VB, Prokudin 2007]

Prediction for ν in $\bar{p}p$ Drell-Yan

 h_1^\perp from a spectator model adjusted to NA10 data ($\langle k_T^2 \rangle \sim 0.30~{\rm GeV^2})$

[VB, Lu and Ma 2007]

Solid curve: expectation for $s=45~{\rm GeV^2}$ and $M^2=5~{\rm GeV^2}$

The role of DY processes

- $\bar{p}^\uparrow p^\uparrow$ \Rightarrow valence h_1 , $p^\uparrow p^\uparrow$ \Rightarrow sea h_1
- $\bar{p}p \Rightarrow h_1^{\perp}$ (Also $\pi p \Rightarrow h_1^{\perp}$, but involves $h_1^{\perp \pi}$)
- $\bar{p}p^{\uparrow}, pp^{\uparrow}, \pi p^{\uparrow} \Rightarrow f_{1T}^{\perp} \text{ via } \sin(\phi \phi_S)$
- $\bar{p}p^{\uparrow} \Rightarrow h_1^{\perp}, h_1 \text{ via } \sin(\phi + \phi_S)$

DY processes explore a wider range of Q^2 compared to SIDIS

Missing theoretical ingredients for a global analysis

- Transverse motion of quarks and higher twists
 - Full understanding of their interplay
 - Systematic phenomenological study of higher twist effects at moderate energies
- Q^2 evolution of k_T -dependent distributions
 - Very little known QCD equations of motion relate k_T moments to twist-3 distributions, whose evolution is known in the large N_c limit [Henneman, Boer, Mulders 2002]

Conclusions

- Transverse single-spin asymmetries are firmly established
- We learned a lot about initial/final-state effects and correlations between transverse spin and transverse motion of quarks
- From the theoretical point of view, transverse spin phenomena are quite well understood, but some aspects (higher twists, QCD evolution, ...) require further study
- Perspectives and goals:
 - Complete theoretical study of processes (perturbative contributions, transverse spin effects, higher twists, ...)
 - SIDIS: increased statistics, extended kinematic ranges (in x and Q^2), more targets and observables
 - New processes: $p\bar{p}$ DY at GSI, pp DY at J-PARC, πp at COMPASS
 - Ultimately: a global analysis of SIDIS, DY, e^+e^- , ...