Tracking at the LHC

- Role of inner tracking detectors
- Silicon pixel and microstrip detectors
- Impact parameter and vertex resolution
 - Layout of pixel detectors
- Momentum resolution
 - Overall tracker layout
- Tracking performance
 - Material and alignment
- Future detector developments

Acknowledgements

- Many thanks for their help in finding information to:
 - P. Allport, P. Collins, K. Gill, M. Hauschild, C. Parkes, H. Pernegger, P. Riedler, W. Trischuk
- Also note:
 - More information about tracking with gaseous detectors in the lecture on Muon systems by Kerstin Hoepfner
 - More information on Particle Identification in the lecture by Peter Krizan

Two General Purpose Detectors

9 May 2011

Two more specialised, large detectors

9 May 2011

Collider detectors

- Central tracker
 - Locate primary interactions and secondary vertices
 - Measure momentum of charged particles
- Calorimeters
 - Fully absorb most particles and measure their energy
- Muon spectrometer
 - · Measure momentum of muons which pass through the calorimeter

From the outside, all you see is muon chambers: trackers, but not today's topic

Most particles are absorbed in the calorimeters, which measure their energy. Muons (& neutrinos) escape.

This lecture concentrates on central trackers.

Measure the tracks of charged particles emerging from the interaction point.

9 May 2011

Role of trackers at the LHC

- Extrapolate back to the point of origin. Reconstruct:
- Primary vertices
 - → distinguish primary vertices and identify the vertex associated with the interesting "hard" interaction
- Secondary vertices
 - Identify tracks from tau-leptons, b and c-hadrons, which decay inside the beam pipe, by lifetime tagging
 - Reconstruct strange hadrons, which decay in the detector volume
 - Identify photon conversions and nuclear interactions
- Measure the trajectory of charged particles
 - Fit curve to several measured points ("hits") along the track.
 - → measure the momentum of charged particles from their curvature in a magnetic field.

Primary vertices

ATLAS EXPERIMENT

Run Number: 153565, Event Number: 4487360

Date: 2010-04-24 04:18:53 CEST

Event with 4 Pileup Vertices in 7 TeV Collisions

& curving tracks 10

9 May 2011

Lifetime tagging

ΡV

SV

8

TV

Tracks have significant impact parameter, d₀, and maybe form a reconstructed secondary vertex

9 May 2011

LHCb Preliminary

EVT: 49700980

RUN: 70684

12 -

10

8

6

4

2 -

scale in mm

Constraints on trackers

- High occupancy, high radiation dose and high data rate
 - At full design luminosity, >20 interactions per pp bunch crossing
 → 1000 charged particles in tracker, every 25ns.
 - Even higher multiplicity in central (head-on) Pb-Pb collisions (ALICE speciality) with >10000 charged particles in trackers
 - Design for 10¹⁵ neq (neutron equivalent) for innermost layers (10 year lifetime)
- Minimise material for most precise measurements & to minimise interactions before the calorimeter
 - Increasing sensor granularity to reduce occupancy
 → increase number of electronics channels and heat load
 → more material
- Technology choice
 - Silicon detectors, usually pixels for vertexing, and strips for tracking
 → good spatial resolution, high granularity, fast signal response, &
 thin detector gives a large signal.
 - Usually complemented by gas detectors further away from vertex

9 May 2011

Additional roles of trackers at LHC

- Trackers also contribute to particle identification (PID)
 - Measure rate of energy loss (dE/dx) in the tracker
 - Use dedicated detectors to distinguish different particle types
 - Transition Radiation Detectors also contribute to tracking
 - Time of Flight
 - Ring Imaging Cerenkov Detectors
 - Match tracks with showers in the calorimeter
 - Identify electrons from characteristic shower shape
 - Match central tracks with muon chamber track segments
 - Muon chamber information improves muon momentum measurement
- Focus today on the silicon detectors
 - Vertexing and impact parameter measurement
 - Pattern recognition and momentum measurement from full track

Overall design choices

- ATLAS and CMS General Purpose Detectors (GPDs)
 - Central tracker covers |η|<2.5.
 Polar angle expressed as pseudorapidity: η = -In tan (θ/2)
- ALICE optimised for heavy ions, high occupancy
 - Tracker restricted to $|\eta|$ <0.9, plus forward muons
- All three are symmetric about the interaction point
 - Solenoid magnet providing uniform magnetic field parallel to the beam direction
- LHCb beauty-hadron production in forward direction
 - Despite the different geometry, design is driven by the same principles to give optimal performance
 - Tracker is not in a magnetic field. Tracks are measured before and after a dipole magnet

Silicon detectors

Silicon detectors

- Silicon detector is a p-n diode
 - p-type (more holes)
 - n-type (more electrons)
 - · Current can flow if forward biased

- Reverse bias to create a depletion layer with no mobile charge carriers
 - Passage of a charged particle releases electron-hole pairs by ionisation
 - 20 000 to 30 000 pairs in 300 μm
 - Signal >10 times more than background noise
 - High enough resistivity to allow full depletion (i.e. full depth of sensor) with a few 100V

Microstrip sensors

- Make many diodes on one wafer
 - ~50 μm strip pitch (possible with planar fabrication process)

Pippa Wells, CERN

- Glue wafers back-to back, or make strips on two sides
- eg. p strips in n bulk

ē,

Metalisation above strips, with bond pads

9 May 2011

Evolution of silicon strip detectors

- LEP eg. DELPHI (1996)
 - 1.8 m² of silicon
 - 175k readout channels

- CDF SVX IIa (2001)
 - 6 m² of silicon
 - 175k channels

- CMS tracker
 - full silicon tracker
 - 210 m² of silicon
 - 10.7 M channels

Pixels

- 2-d position information with high track density.
 - Back-to-back strips give "ghost" hits. Pixels give unambiguous point
- Hybrid pixel detectors with sensors and readout chips bumpbonded together in a module

Silicon systems

- Sensors have high intrinsic accuracy and mechanical rigidity
 - Tilt detectors to reduce charge spreading by Lorentz effect in B-field
 - Lightweight support structures must be stable

- Innermost layers must withstand >10¹⁵ neq over ~10 years
 - Increased noise and heat load from increased leakage current risk of thermal runaway
 - May not be able to fully deplete the sensor
 - Type inversion (n-type bulk becomes p-type bulk, so depleted region develops from the opposite side of the sensor)
 - Keep the detectors at -10 ° C to reduce leakage current and to reduce reverse annealing (further degradation without irradiation)
 - Low radiation dose received to date only just starting to see evolution of leakage currents

Vertex precision & pixel detectors

Track coordinates

With a uniform B field along the z-axis (= beam line), track path is a helix (i.e. for ALICE, ATLAS or CMS central trackers) Pseudorapidity, $\eta = -\ln \tan (\theta/2)$. Transverse momentum, $p_T = p \sin \theta$ Transverse (*xy*) and Longitudinal (*rz*) projections. Define impact parameter w.r.t. point of closest approach to origin or PV

Impact parameter resolution

Uncertainty on the transverse impact parameter, d_0 , depends on the radii and space point precision. Simplified formula for just two layers:

$$\sigma_{d_0}^2 = \frac{r_2^2 \sigma_1^2 + r_1^2 \sigma_2^2}{(r_2 - r_1)^2}$$

Suggests small r_1 , large r_2 , small σ_1 , σ_2 But precision is degraded by multiple scattering...

Multiple Scattering

• Particle incident on a thin layer, fraction x/X_0 of a radiation length thick, is bent by angle ω

- Distribution of ω is nearly Gaussian (central 98%)
- $d_0 = r \tan \omega \approx r \omega$

K. Nakamura et al. (PDG), J. Phys. G 37, 075021 (2010)

$$\sigma_{d_0} = \frac{r}{\beta c p} 13.6 \text{MeV} \sqrt{\frac{x}{X_0}} \left[1 + 0.038 \log \left(\frac{x}{X_0}\right) \right]$$

- Higher momentum, $p \rightarrow$ less scattering
- Best precision with small radius, *r*, and minimum thickness *x* 9 May 2011
 Pippa Wells, CERN

Transverse IP resolution

For a track with $\theta \neq 90^{\circ}$ $r \rightarrow \frac{r}{\sin \theta}$, $x \rightarrow \frac{x}{\sin \theta}$

Resulting in:

$$\sigma_{d_0} \approx \sqrt{\frac{r_2^2 \sigma_1^2 + r_1^2 \sigma_2^2}{(r_2 - r_1)^2}} \oplus \frac{r}{p \sin^{3/2} \theta} 13.6 \text{MeV} \sqrt{\frac{x}{x_0}}$$
$$\sigma_{d_0} \approx \alpha \oplus \frac{b}{p_T \sin^{1/2} \theta}$$

Constant term depending only on geometry and term depending on material, decreasing with p_T

9 May 2011

Summary of pixel barrel layouts

	ALICE	ATLAS	CMS
Radii (mm)	39 – 76	50.5 - 88.5 - 122.5	44 – 73 – 102
Pixel size $r\phi \ge z$ (μm^2)	50 x 425	40 x 400	100 x 150
Thickness (µm)	200	250	285
Resolution $r\phi / z$ (µm)	12 / 100	10 / 115	~15-20
Channels (million)	9.8	80.4	66
Area (m ²)	0.2	1.8	1

The LHCb VELO: forward geometry strip detector with 42 stations along, inner radius of 7 mm.

Moves close to beam when conditions are stable.

9 May 2011

IP resolutions

S.Alekhin et al. HERA and the LHC - A workshop on the implications of HERA for LHC physics:Proceedings Part B, arXiv:hep-ph/0601013.

IP resolutions

9 May 2011

Momentum measurement & tracker layout

Measuring momentum

• Circular motion transverse to uniform B field: $p_T[GeV/c] = 0.3 \cdot B[T] \cdot R[m]$

• Relative momentum uncertainty is proportional to p_T times sagitta uncertainty, σ_s . Also want strong B field and long path length, L

Measuring momentum

Sagitta uncertainty, σ_s , from N points, each with resolution $\sigma_{r\phi}$ is:

$$\sigma_{s} = \sqrt{\frac{A_{N}}{N+4}} \frac{\sigma_{r\phi}}{8}$$

Statistical factor A_N = 720: (Gluckstern)

The point error, $\sigma_{r\phi}$ has a constant part from intrinsic precision, and a multiple scattering part.

Multiple scattering contribution: $\sigma_s \propto \frac{L}{p_T \sin^{1/2} \theta} \sqrt{\frac{L}{X_0}}$

 $\frac{\sigma_{p_T}}{p_T} = \frac{8p_T \cdot \sigma_s}{0.3BL^2} \approx \alpha \cdot p_T \oplus \frac{b}{\sin^{1/2} \theta}$

Momentum resolution

2008 JINST 3 S08004 CMS Experiment 2008 JINST 3 S08003 ATLAS Experiment

CMS tracker layout

• Silicon Barrels and Disks (including End-Cap disks)

- Barrels have 3 pixel layers and 10 microstrip layers
 - Inner strips 10cm x 80 to 120 μ m (320 μ m thick)
 - Outer strips 25cm x 180 to 120 μ m (500 μ m thick for S/N)
- 4 strip layers have additional stereo module for z coordinate
 9 May 2011 Pippa Wells, CERN 33

6.2m

Barrel track passes: ~36 TRT 4mm straws (Transition Radiation Tracker – gas detector)

4x2 Si strips on stereo modules12cm x 80 μm, 285μm thick

3 pixel layers, 250μm thick

9 May 2011

Tracker Material Budget **Material** ×'× Outside CMS Other Support Cooling 1.8 Big contributions from Electronics Sensitive 1.6 Beam Pipe supports, cables, 1.4 cooling, electronics... 1.2 **ATLAS Inner Detector** 0.8 2.5 Radiation length (X_0) External 0.6 Supports/other Cables Cooling 0.4 Electronics Active 0.2 .5 Beam-pipe 0<u>/</u> -3 2 3 0 1 4 η Sensitive material 0.5 0 0.5 1.5 2.5 3 3.5 4.5 2008 JINST 3 S08004 CMS Experiment η 2008 JINST 3 S08003 ATLAS Experiment Sensitive material

9 May 2011

ALICE heavy ion event display

CMS Tracker & ALICE TPC

(plus a LEP silicon detector!)

9 May 2011

LHCb tracking

Comparison of (barrel) tracker layouts

	ALICE	ATLAS	CMS
R inner	3.9 cm	5.0 cm	4.4 cm
R outer	3.7 m	1.1 m	1.1 m
Length	5 m	5.4 m	5.8 m
η range	0.9	2.5	2.5
B field	0.5 T	2 T	4 T
Total X ₀ near η=0	0.08 (ITS) + 0.035 (TPC) + 0.234 (TRD)	0.3	0.4
Power	6 kW (ITS)	70 kW	60 kW
rφ resolution near outer radius	~ 800 μm TPC ~ 500 μm TRD	130 μm per TRT straw	35 μm per strip layer
p_T resolution at 1GeV and at 100 GeV	0.7% 3% (in pp)	1.3% 3.8%	0.7% 1.5%

Summary - Precision of trackers

- Intrinsic space point resolution
 - Sensor design (pixels, strips, gas detectors...)
- Magnetic field
 - Strength, and precise knowledge of value
- Alignment
 - Assembly precision, survey, stability
 - Measure the positions of detector elements with the tracks themselves
 - Control systematic effects
- Multiple scattering and other interactions
 - Minimise the material
 - Measure the amount of material in order to simulate the detector and reconstruct tracks correctly
 - Also affects energy measurement in calorimeter

Material and alignment

Weighing detectors before construction

Keep track of all the parts, big and small. Weigh them, and know what material they are made of.

Weighing detectors during construction

Weigh assembled parts where possible, to cross check. eg. Measured ATLAS TRT, and TRT+SCT after insertion.

Compare the weighing methods...

- Measured weight (from weighing complete detector)
- Estimated weight from adding up all the parts
- Simulated weight as implemented in Monte Carlo description

Detector	Measured weight (kg)	Estimated weight (kg)	Simulated weight (kg)
SCT barrel	201 ± 20	222 ± 6	222
TRT barrel	707 ± 20	703 ± 3	700
SCT+TRT barrel	883 ± 20	925 ± 7	922
SCT end-cap A	207 ± 10	225 ± 10	225
SCT end-cap C	172 ± 10	225 ± 10	225
TRT end-cap A	1118 ± 12	1129 ± 10	1131
TRT end-cap C	1120 ± 12	1129 ± 10	1131
Pixel barrel		20.1	18.3
Pixel package	193.5 ± 5	201	197

9 May 2011

Weighing detectors after construction

- Central trackers are buried inside the experiments
- Identify material interactions to assess material, eg.
 - Photon conversions
 - Nuclear interactions
 - Stopping tracks (track ends when particle interacts)
- Have to disentangle effects of
 - Material
 - Alignment
 - Magnetic field map
 - → Effects on momentum measurements which distort the measured masses and width of particles, (K⁰_s, J/ψ, Z...) or give systematic +/- charge differences
- In general, compare real data with detailed GEANT 4 simulation based on design, and gradually refined

9 May 2011

Photon conversions

- Conversions, $\gamma \rightarrow e^+e^-$, example from CMS
 - Two oppositely charged tracks
 - Consistent with coming from the same point
 - Consistent with fit to a common vertex, imposing zero mass

CMS conversions in pixel barrel

- ϕ distribution for conversions with |z| < 26 cm, R< 19 cm
- → Compare pixel barrel structure in data and simulation
- Spikes due to cooling pipes

9 May 2011

CMS conversions

- Correct for identification efficiency to make a quantitative measurement of pixel and inner tracker barrel material
- Relative agreement between data and simulation ~10%
- Local discrepancy for support between TIB and TOB

Nuclear interactions

- ATLAS example
 - Tracks with d₀>2mm w.r.t PV
 - Form secondary vertices
 - Mass veto for $\gamma,\,{\rm K^0}_{\rm s},\,\Lambda$

- x-y view for |z|< 300mm
- Sensitive to interaction lengths instead of radiation lengths

ATLAS-CONF-2010-058

Radius [mm]

9 May 2011

- Full φ range shows displaced beam pipe(i.e. r varies with φ)
- Some features more spread out in data than MC.

Radius [mm]

LHCb VELO material

2.4M vertices in plot ۲

LHCb Preliminary $\sqrt{s} = 7$ TeV

- ~20k from material interactions •
- Require \geq 3 tracks per vertex •

RF foil photo with VELO open

Alignment performance

- Track based alignment minimises residuals for a sample of tracks, by adjusting position of sensitive elements.
- Position and width of known mass objects allows momentum resolution measurement.

from F. Meier

Alignment performance

Systematic distortions, example a twist, are hard to detect. Track residuals can be minimised but p_T is biassed.

from P. Brückman de Renstrom

Two oppositely charged tracks, consistent with the same vertex. Assume the tracks are pions. Reconstruct the pair invariant mass.

World Average PDG value 497.614 \pm 0.024 MeV

Two oppositely charged tracks, consistent with the same vertex. Assume the tracks are pions. Reconstruct the pair invariant mass.

World Average PDG value 497.614 \pm 0.024 MeV

Tracker Material Budget

CMS example: K_s^0 mass vs η 1< $|\eta|$ <1.5 is most difficult to model Mass shifted upwards in simulation Same trend with η in data

CMS-PAS-TRK-10-004

Pippa Wells, CERN

2

3

 $K_{S} \eta$

<u>μ⁺μ⁻ mass spectrum</u>

Well known resonances. Observed widths depend on p_T resolution. Again, check for biases in mass value as a function of η , ϕ , p_T ...

$J/\psi \rightarrow \mu^+\mu^-$ mass and width

As a function of the η of the more forward muon.

$J/\psi \rightarrow \mu^+\mu^-$ mass and width

As a function of muon transverse momentum (CMS example)

Reconstructed mass in data tends to be too low at low momentum, and p_T resolution is up to 10% worse (from width). These distributions can then be used to make corrections.

9 May 2011

Shutdowns and Upgrades

9 May 2011

Long Shutdown 1 (2013)

- LS1 moved from 2012 to 2013
 - Delay some consolidation work by a year
 - Anticipate some improvements originally planned for LS2
- ATLAS
 - New beam pipe with Insertable B-Layer (new pixel layer at lower r)
 - May need to replace existing pixel optical readout
 - New ID cooling plant
- ALICE
 - Repair and consolidation of tracker, especially pixel cooling.
- CMS
 - Improved barrel-end cap seal to run tracker colder
- LHCb
 - Replace some silicon tracker modules with scintillating fibre
 - Maybe exchange VELO (depending on accumulated dose. Replacement VELO is under construction. Copy of present VELO geometry with different sensor type.)

9 May 2011

Long Shutdown 2 (2017)

- ALICE
 - Silicon tracker upgrade with new beam pipe
- ATLAS
 - Fast track trigger
 - IBL (if not installed in LS1)
 - Maybe already install HL-LHC pixel detector?
- CMS
 - Low mass 4-layer pixel detector with new beam pipe
- LHCb
 - Pixel VELO and new tracker for design luminosity

Long shutdown 3 (2021)

New Inner Trackers for HL-LHC to accumulate ~3000 fb⁻¹

Technology improvements

- HL-LHC larger occupancy and radiation dose
 - Will need higher granularities at larger radius (eg. short strips) for 200 events per bunch crossing.
 - Active R&D programmes for improved sensor technology, eg. 3d detectors – deplete between columns → short distance, low depletion voltage and fast signal.
 - Continue to study alternative materials (RD50 for silicon, RD42 for diamond)
 - New interconnects (fuse sensor and FE chip without bump bonds)

n-type substrate

Conclusions

- LHC tracker layouts were optimised for the physics goals:
 - Distinguish primary vertices
 - Measure impact parameters and secondary vertices
 - Measure the track momentum
- Trade-off between precision and material
 - Most of the material budget is not in the sensitive elements, but support structures, cables, cooling...
 - Careful work to control material during construction
 - Very little radiation damage so far to be monitored carefully
- Good agreement between simulated performance and measurements with data. Further improvements in progress.
 - Alignment of detectors using tracks is already high quality
 - Photon conversions, material interactions, and masses of known particles allow material to be measured and systematic checks of alignment distortions to be made.
- R&D for upgrades is underway