MUON DETECTION & T THE LHC

- 1. Basics: Muons and their interactions with matter
- 2. Principles of gas-filled detectors
- 3. Types of gas detectors
- 4. Implementations at the LHC

Kerstin Hoepfner RWTH Aachen, III. Phys. Inst. A

IHE BASICS

Muon properties Why do muons have their own detection system? Interactions of muons with detector material

A Lepton Named "Muon"

Muon properties

- Lepton of 2. family
- Mass 105,6 MeV
- Muon charge: -1 or anti-muon charge: +1
- Spin: ¹/₂
- Discovered in cosmic rays 1937 by Anderson with a cloud chamber
- Muon is a heavy copy of electron, interacts electromagnetically, but not strongly
- Energy loss mainly due to ionization → can pass through a lot of material
- Mean life = 2.197 × 10⁻⁶ s → does not decay in the detector

Anderson's cloud chamber to study cosmic rays (1937)

Particle Detection

Detection of particles through their interaction with matter \rightarrow deposition of energy \rightarrow electrical signal

- Ionization
- Bremsstrahlung (up to LHC energies mainly for electrons)
- Shower (electromagnetic for e/γ , strong for hadrons)

Neutrinos \rightarrow Missing transverse energy

Important Discoveries with Muons

K.Hoepfner, RWTH Aachen

Basic Muon Detector

Today's design (very generic)

Material to absorb everything other than muons (thickness energy dependent)

EM and hadronic calorimeters Potential punch ensitive material Sensitive material Sensitive material (heavy) through from Act also as Historic calorimeter absorber design, often without B-field S **B**-field

Because muons traverse the detector, signatures with muons in final states are relatively easy to detect \rightarrow most golden channels are the ones with muons in the final state

K.Hoepfner, RWTH Aachen

Detectors for Muon Systems

Requirements for muon systems:

- Very large areas to cover O(100 m2)
- Low occupancy allows relatively large cell sizes O(mm)
- Low radiation levels

Main technologies:

- Planes of scintillator between absorber
- Gas-filled detectors in many different implementations

Advantages of gas detectors:

- Large radiation length X₀, multiple scattering proportional to 1/sqrt(X₀)
- Large volumes / areas possible, momentum resolution $\Delta p/p \sim 1/L^2$
- Can be segmented, multiple layers in a station
- Relatively inexpensive, mostly gas

Main

technology

Historic Development

- In the past muon system concentrated on muon ID
- Today, at LHC, muon systems are full sized trackers

Muon system <u>alone</u> measures momentum and charge in addition to muon ID

Upsilon Signal at Discovery & Today

Discovery of the Upsilon 1977 at FNAL

K.Hoepfner, RWTH Aachen

Cern ACT Lecture: Muon Systems, May 2011

Example of Golden LHC Signature

- Because muons fly so far, signatures with muons in final states are relatively easy to detect → most golden channels are the ones with muons in the final state
- Simulated Higgs event $H \rightarrow ZZ \rightarrow \mu^+ \mu^- \mu^+ \mu^-$
- Guiding physics channel for the design of ATLAS & CMS muon systems

At high interactions rates of the LHC, high resolution measurements needed \rightarrow muon SA track segments

How to Detect Muons?

- Muon-ID By Absorption and Tracking in the Muon System
- Charge Curvature in B-Field
- Muon p_T Bending of the track, to combine with tracker needs alignment
- Acceptance Tracker and Muon System
- Efficiency $\varepsilon_{Higgs} = \varepsilon_{\mu}^{4}$

Precise Momentum Measurement

Bremsstrahlung of Muons

- Main energy loss due to ionization (Bethe-Bloch dE/dx)
- Additional energy loss through electromagnetic interaction in the coulomb field of the nucleus

$$-\left(\frac{dE}{dx}\right)_{brem} = 4\alpha \cdot N_A \left(\frac{e^2}{4\pi\varepsilon_0 c^2}\right)^2 \cdot \frac{Z^2}{A} \cdot \ln \frac{183}{Z^{1/3}} z^2 \cdot \frac{\pi^2}{m^2} e^{-\frac{\pi^2}{m^2}} e^{-\frac{\pi^2}{m^2}}$$

Multiple Scattering

Multiple Rutherford scattering with the nuclei of the detector material

- Small changes per collisions
- Many collisions \rightarrow in the sum measurable deviation from trajectory

Operational Principles of Gas-Filled Detectors

Main Processes in Gas

Particle detection based on ionization of gas

- 1. Energy loss of charged particles, mainly through ionization
- Energy loss transfered to gas and creation of electron-ion pairs, ionization threshold (Silicon ~3.6 eV, Gas ~20-100 eV), Statistics
- 3. Drift in electric field
- Gas amplification (secondary process) in high E-field near the wire. Amplification strength → detector type. Number of primary electrons too small for direct detection

$$n_{total} = \frac{\Delta E}{W_i} = \frac{\frac{dE}{dx} \cdot \Delta x}{W_i} \approx (3-4) \cdot n_{primary}$$

5. Signal creation

Primary Ionization

Electron-Ion pairs created directly by the charged particle, along its trajectory of length L . Statistical process, depends on mean free path λ between collisions :

$$\lambda \propto \frac{1}{N \sigma_{i}} = \frac{1}{\alpha}$$
 $\alpha = 1.Townsend-coefficient$
 $\sigma_{i} = ionisation cross section per electron
N = number of electrons$

Collision frequency if **Poisson distributed**:

$$P(L/\lambda,k) = \frac{(L/\lambda)^{k}}{k!} e^{(-L/\lambda)}$$
Typical values: N=10...100 e/Ion-Pairs per
MIP (2 MeV/g cm⁻²) in 1 cm gas.

Gas	$\sigma_{\rm i}~(10^{-20}~{\rm cm^2})$	W (eV/e-Ion Pair)	dE/dx (keV/cm)	# collisions per cm (1 cm/ λ) @ γ =4
He	18.6	41	0.32	~5
Ne	43.3	36	1.41	12.4
Ar	90.3	26	2.44	27.8
Xe	172	22	6.76	44
CO_2	132	33	3.01	n.n.

Ionization & Charge Separation

• Charges are distributed along the trajectory

- Electronic signal requires charge separation!
- Charge separation using electric fields, electrons and ions drift in opposite direction.
- Charge collection time \rightarrow time resolution (separation of events)

Drift

Applying an electric field:

- Between the accidental collisions of the thermal movement (no particular direction) now directional acceleration due to the field
- Results in a macroscopic drift with velocity v_D

Drift Electrons and Ions

Drift of electrons

K.Hoepfner, RWTH Aachen

Gas Amplification

- Primary ionisation: typically ~100 e/lon pairs per cm
- Electronics noise: ENC ~1000 e-
- → Signal needs to be amplified. Use high field strength near the anode wire (10⁴-10⁵ V/cm) → Avalanche

Amplification of the pulseby factor A $\Delta V_{\text{max}} = A \frac{N \cdot e}{C} = A \frac{Q_{prim}}{C}$

Amplified pulse can be electronically processed.

Amplification A depends on field strength E and pressure p. Region where $\Delta V \sim Q_{prim}$ (A=const) \rightarrow Proportional region

Modes of Operation

Gas amplification depends on field strength (applied voltage)

- I Recombination
- II Ionization chamber
- **III** Proportional counter
- IV Geiger-Müller-counter
- V Discharge region

proportional region prefered for most detectors

Amplification through Secondary Ionization

Collisions of primary electrons with further atoms (if sufficient energy) 1.

- Secondary amplification depends on Gas (α) and field strength •
- Technically implemented with a thin wire (~50 μ m) \rightarrow E~r⁻¹ • \rightarrow primary electrons gain sufficient energy for multiple secondary ionizations
- Energy released by atoms excited by collisions 2.
- Not wanted Creation of UV- γ which can cause further ionization should be • suppressed \rightarrow reduced by addition of "quenchers" which absorb photons
- Typical quench gases: organic molecules like CH_4 , Isobutan C_3H_8 , CO_2
- Note: addition of these gases modifies gas properties, like drift velocity (e.g. CO_2) • and ageing (e.g. CF_4)

wanted

Types of Gas Detectors

O JESSE/ES Date: 3 Sec

<u>Drift Tubes (DT)</u>

Typical parameters:

$$J_0 \sim 2 \text{ kV}$$
; $r_a/r_i \sim cm/\mu m \sim 10^{-5}$

Ions

Operational principle:

- Ionization along the particle's track
- Electrons drift to anode wire
- Gas amplification near the wire, $G \sim 10^3 \dots 10^5$
- Charge collection, signal creation

Resolution can be improved by:

Recording the drift time, Operation at overpressure

Cern ACT Lecture: Muon Systems, May 2011

Improving the Resolution

1) Measurement of drift time Δt of electrons from location x (where particle passed) to the anode wire

Constant drift velocity v_D wanted (typically ~50 mum/ns, gas dependent)

2) Application of overpressure

Diffusion $\sqrt{D} \sim 1/\sqrt{p}$

Only implemented

by ATLAS

Coordinate Reconstruction

Coordinate reconstruction: $\mathbf{x} = \mathbf{v}_{\mathbf{D}} \Delta \mathbf{t}$

with v_D =const., t0 known (trigger)

Contributions to precision:

- Tolerances of drift distance:
 - mechanical precision,
 - wire positioning (~50 mum),
 - wire sag due to gravitation
- Inhomogeneities of electric field, variations of drift velocity
 - E-field,
 - gas purification
- Diffusion of drifting electrons (especially at large drift distances)
- Fluctuations in primary ionisation

(Some) Implementations of DTs

K.Hoepfner, RWTH Aachen

Cern ACT Lecture: Muon Systems, May 2011

CMS Drift Cell

ArCO₂85%-15%

K.Hoepfner, RWTH Aachen

Multi Wire Proportional Chamber (MWPC)

Operational principle

- Several wires between planar cathodes (Charpak Nobel prize)
- Operated in proportional mode
- Gas amplification G~10³...10⁵
- Resolution determined by wire spacing

- Wire planes rotated by 90° allows reconstruction of 3D-coordinate
- Possible to measure dE/dx
- New, miniaturized version: Micro Strip Gas Chamber (MSGC)

K.Hoepfner, RWTH Aachen

Implementation in LHCb

- 5 stations M1-M5 (total active surface of 435 m²) separated by iron filters
- 1368 MWPC and 24 triple GEM detectors (in M1 close to beam) with spatial X-Y readout
- Most MWPCs (960) with anode-wire readout, others with cathode-pad or mixed (anode-wire + cathode-pad) readout
- To ensure efficiency and redundancy, all M1 detectors with two sensitive layers in OR, M2-M5 have four layers

<u>Micro Strip Gas Counters (MSGC)</u>

- Minimized version of a MWPC without real wires
- Better resolution than MWPC
- Finer granularity to resolve high occupancies and provide faster signals (high rate environment)
- Amplification ~10³, less than MWPC.
 High anode voltages → discharges can occur → structural damage

Typical distance between wires 1 mm

MSGC structure after several discharges → useless

Best operated in conjunction with GEMs to reduce voltage

between anodes 200 µm

K.Hoepfner, RWTH Aachen

Cern ACT Lecture: Muon Systems, May 2011

Cathode Strip Chambers (CSC)

K.Hoepfner, RWTH Aachen

Cern ACT Lecture: Muon Systems, May 2011

Large CSC System (CMS & ATLAS)

CMS conditions:

Gas: $Ar/CO_2/CF_4 = (30/50/20)\%$ 6 layers per station

Four stations per end-cap

CMS all of forward muon system, ATLAS at high eta

Detectors with short drift distances or no drift at all needed for environment with high rates or inhomogeneous B-field Also possible: TGC as used by ATLAS

<u>Resistive Plate Counter (RPC)</u>

RPCs are Everywhere

- Implemented in all LHC experiments, mainly for triggering (fast time response) but also provide spatial information (example: third coordinate in ATLAS barrel)
- Need rather high voltage O(10 kV). Dark current increases with HV
 → careful tuning of parameters
- Noise needs to be controlled (HV, temperature, gas mixture)

CMS RPC System

1500 m² Forward RPCs

800

1000

1200 Z (cm)

4000 m² Barrel RPCs

Strips: measure bending coordinate, resolution ~1cm

Fast response (~2 ns) for unambiguous BX ID

Note: DTs integrate over several BXs (CMS & ATLAS)

- 912 chambers with ~160 k channels
- Barrel with 6 stations (for softer muons), endcap with 3 stations up to $|\eta| < 1.6$
- Double gap with single readout strip in OR
- Avalanche mode to cope with hit rate up to 1 kHz/cm²
- Gas: 96.2% C2H2F4, 3.5% Iso-Butane, 0.3% SF₆

<u>Gas Electron Multiplier (GEM)</u>

- Recent development (F.Sauli et al, CERN)
- Aim: separation of amplification and readout

Operational principle:

K.Hoepfr

- Thin kapton foil with metalized surface and ~50-70 μ m holes. ~140 μ m separation
- In the holes high field strength, leads to amplification of the electron signal
- Amplification ~10³ per GEM foil. Often several consecutive foils in a chambers (triple GEM)

Implemented in LHCb

ems, May 2011

Implementations at the LHC

Overall Design Choices (Multipurpose Detectors)

ATLAS and CMS: multipurpose experiments, need to detect muons over a large p_T range 3 GeV < p_T <3 TeV, muon systems are stand-alone trackers

- ATLAS
 - Air core toroid \rightarrow no multiple scattering, good resolution
 - − Toroidal B-field of 0.7 T → next slide for B-field
 - Three stations (min. number needed), very large area to be covered
 - Punch through from calorimeters to be treated
 - Technology choices: pressured DT, RPC, CSC, TGC
- CMS
 - Iron return yoke \rightarrow resolution limited by multiple scattering
 - Less problems with punch through
 - Complementary technologies, high redundancy
 - 4 stations on muon track
 - Technology choice: DT, RPC, CSC

Impact of Magnet Design

ATLAS <u>A T</u>oroidal <u>L</u>HC <u>ApparatuS</u>

Main magnet = Toroid, B = 0.7 T
Bending in (r,z)
Straight track in (r,φ) → Extrapolation to z-coord. of the beam (~cm)
In tracker additional solenoid, B = 2 T, here bending in transversal plane (r,φ)

No iron in muon system

Homogeneous B-field

CMS Compact Muon Solenoid

Just one magnet, Solenoid B = 3.8 T

Bending in transversal plane (r,φ)
In (r,z) straight track → Extrapolation to beam (focused dimension) →
Trigger on impact parameter

Requires return yoke in muon system Inhomogeneous field at large η

Momentum Resolution

Combined Resolution

ATLAS

ATLAS Monitored DT System

- Little multiple scattering \rightarrow high precision
- Less track bending \rightarrow higher precision for measurement + alignment $p_T=1$ TeV/c has ~700 µm Sagitta $\rightarrow 10\% \Delta p/p$ needs O(70 µm) precision
- Larger coverage in η
- 3 Muon Stations
 ~1200 Chambers
 Outer diameter ~20m
 In barrel + endcap
- 1 Coordinate measured with precision drift tubes, (r, \u03c6) Coordinate provided by RPCs
- RPCs for triggering
- Alignment very important

ATLAS Drift Cell and Resolution with Overpressure

- Ionization: 100 cluster/cm with 2-3 e⁻ (3 bars Ar/CO₂ 93/7)
- Electron drift: maximum Drift time ~800 ns for Ar/CO₂ 93/7

Resolution per cell (r-dependent) < 100 μm

CMS Muon System

$Muon \ Barrel \qquad 0 < |\eta| < 1.2$

- 5 barrel wheels, iron return yoke for the solenoid magnet
- Almost no B-field at chamber positions
- 250 Drift Tube (DT) Chambers
- 480 Resistive Plate Chambers (RPC)

Forward Muon $0.9 < |\eta| < 2.4$

- Arranged in 2 x 3 disks
- 4 muon stations in 2/3 rings
- Inhomogenous field with B<1.2 T
- 250 Cathode Strip Chambers (CSC)
- 483 Resistive Plate Chambers (RPC)

~0.5 M channels

~10,000 m² instrumented

All detectors used for triggering and reconstruction

Barrel Drift Tube Chambers (DT)

250 chambers arranged in 5 wheels, each with 4 stations forming concentric cylinders, 172 k readout channels

CMS chambers interleaved with iron yoke

- B-field contained in the iron (B~1.9 T) except MB1 of outermost wheels
- B-field in iron for p_{T} measurement, track curvature flips in MB3
- Punch-through only in first station
- Cell resolution ~250 μ m, station resolution ~100 μ m (limited by multiple scattering)

Operating Conditions of CMS Muon System

Magnetic Field

Uniform B-Field in central area. Varying B-Field strength 1.5 T – 3.5 T in the end caps.

High Particle Flux

In the end caps 20 kHz/channel, 4x larger than MIP signal. Maximum of 1 kHz/cm²

K.Hoepfner, RWTH Aachen

Drift and B-Field

Influence of B-field on drift behavior appears as change of drift velocity
In reality, drift distance changed
→ Correct for it with fixed drift velocity (external measurement)

Overall Design Choices (Dedicated exp)

ALICE

- Heavy ion experiment, very large track densities, medium pT
- One-arm spectrometer with dipole magnet
- Technology choice: RPC, cathode pad

• LHCb

- Forward spectrometer, fixed target geometry
- Muons very important for b-physics
- Four stations with high resolution chambers behind absorber, one additional station before absorber
- Technology choice: MWPC, GEM

LHCb

Several key measurements rely on μ -ID: e.g. $B_s \rightarrow \mu^+ \mu$ and $B_d \rightarrow K^{*0} \mu^+ \mu$

- Muon systems provides µ-ID to very high purity
- 5 tracking stations, each Locat subdivided in 4 regions with different granularities
- Equipped with Multi Wire Proportional Chambers (MWPCs) and Gas Electron Multipliers (GEMs).
- Total thickness of LHCb hadron absorber (muon shield): ~ 23λ

Fixed target geometry One arm spectrometer

LHCb

Parameter	Design value	
Gas Mixture	Ar/CO ₂ /CF ₄ (45:15:40)	
Gas Gain	$\simeq 6 * 10^3$	
Radiation Hardness	1.6 C/cm ² in 10 years	GEIN
Chamber active area	$20x24 \text{ cm}^2$	
Gas mixture	Ar/CO ₂ /CF ₄ (40:55:5)	
Gas Gain	$\simeq 10^5$	
Gas Gap	5 mm	IVIVYPC
Wire spacing	2 mm	
Wire Diameter	30 µm	

K.Hoepfner, RWTH Aachen

ALICE Muon System

ALICE Muon System

Summary

- Their long lifetime and capability to pass material with minor energy loss (due to ionization) makes muons distinct for detection
- New physics was found in the past with muons. At the LHC, efficient detection of muons important for "golden channels" in searches for new physics
- Muon detectors are based on gas detectors. Large variety of implementations. Most common are DTs, RPCs, CSCs and MWPCs.