

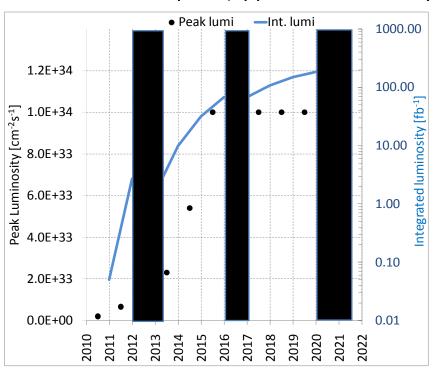
HL-LHC project

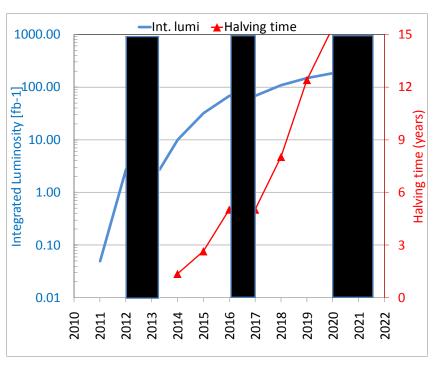
(including introduction to Hi-Lumi Design Study)

Lucio Rossi CERN

3rd sLHC Annual Meeting @ INSTN, CEA Saclay 8 Febraury 2011

Content

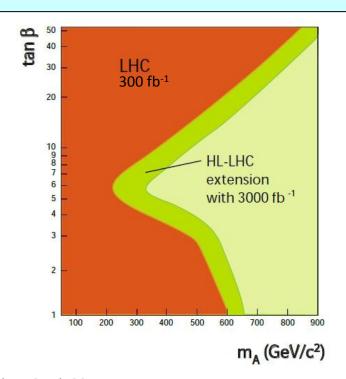

- Scope of HL-LHC
- Main technologies
 - sLHC as key step toward high luminosity
- HiLumi LHC, an FP7 Design Study
 - A global collaboration

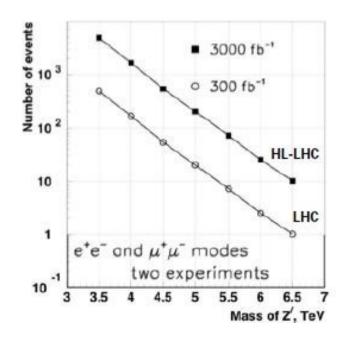

How the lumi might evolve in LHC

Prudent assumptions, of September 2010:

The better than expected LHc behaviour is not yet integrated.

It is assumed to saturate at design luminosity of 1.e34. Today we may assume 1.7-2 e34! The new shutdown plan (approved 31 January 2011) not yet integrated (shutdown in 2013)

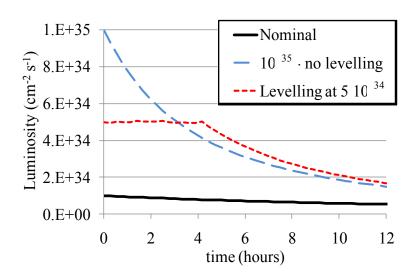


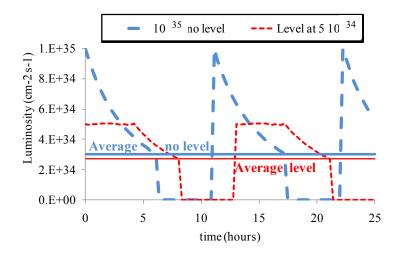

Better performance may push the integrated lumi to 300 fb-1 before 2020.

(some of the) Phyics motivation

In particular, operation at higher luminosity as foreseen by **HL-LHC** has three main purposes:

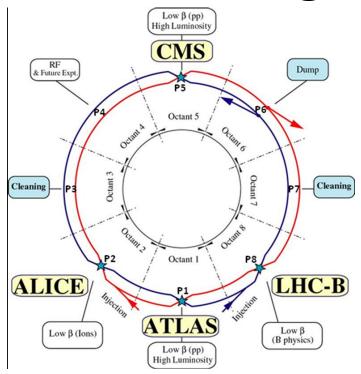
- •Perform more accurate measurements on the new particles discovered in the LHC.
- •Observe rare processes, whether predicted by the Standard Model (SM) or by the new physics scenarios unveiled by the LHC, which have rates below the sensitivity of the current phase.
- •Extend the **exploration of the energy frontier, therefore extending the discovery reach**, by probing the very rare events where most of the proton momentum is concentrated in a single quark or gluon.

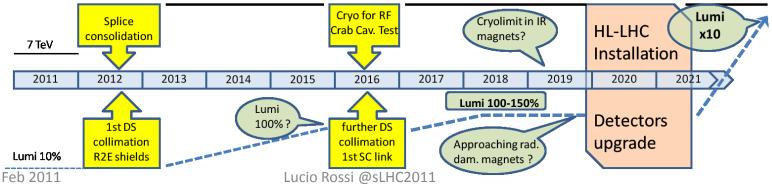




The goal

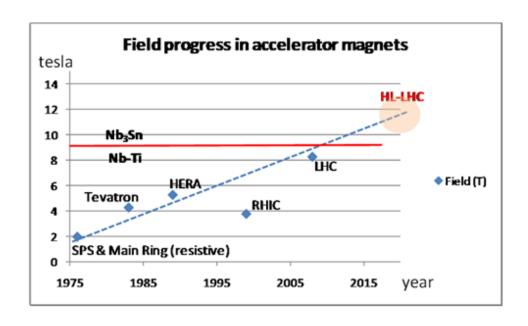
The main objective of HL-LHC is to implement a hardware configuration and a set of beam parameters that will allow the LHC to reach the following targets:


- •A peak luminosity of 5×10³⁴ cm⁻²s⁻¹ with levelling, allowing:
- •An integrated luminosity of **250 fb**-¹ per year, enabling the goal of **3000 fb**-¹ twelve years after the upgrade. This luminosity is more than ten times the luminosity reach of the first 10 years of the LHC lifetime.



5

The path toward high lumi

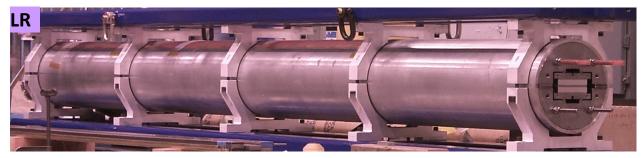


Saclay - 8 Feb 2011

6

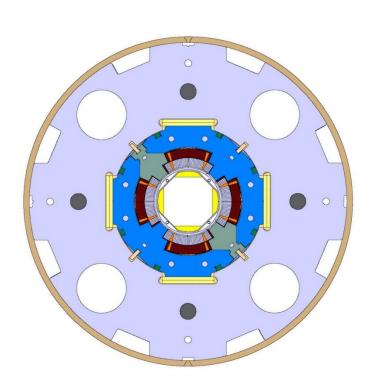
Squeezing the beam High Field SC Magnets

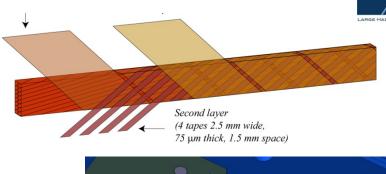
- 13 T, 150 mm aperture
 Quads for the inner
 triplet (LHC: 8 T, 70
 mm). More focus
 strength, β* as low as
 15 cm (55 cm in LHC)
- Dipole separators
 capable of 6-8 T with
 150-180 mm aperture
 (LHC: 1.8 T, 70 mm)

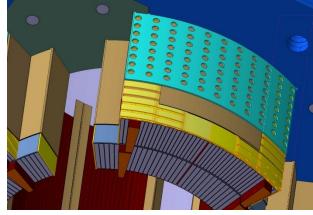


LARP Magnets

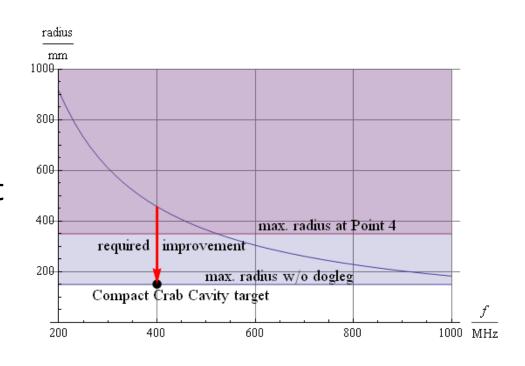




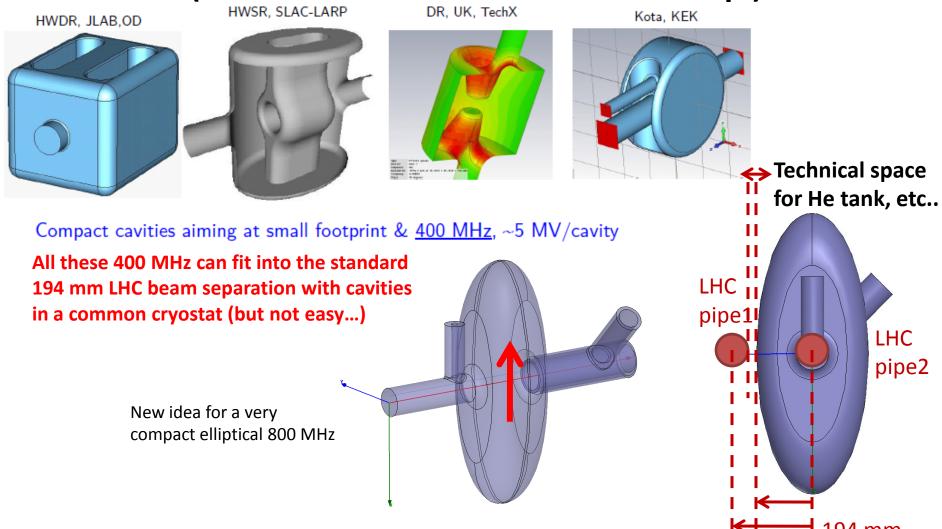




Direct benefit from sLHC program: improved Nb-Ti technolgy



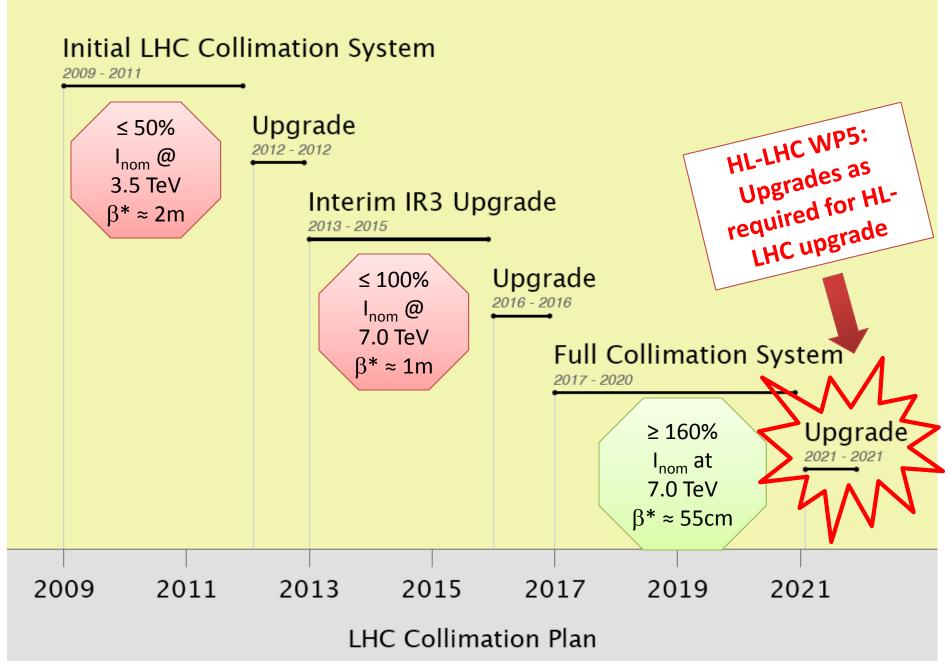
Favorite scheme of HL-LHC requires new Nb-Ti more pushed wrt to present LHC for the matching sections: larger aperture (85-90 mm, wrt LHC 56 mm)


Higher heat deposition will demand use of the new insulation scheme

Improve beam overlap SC RF Crab cavities

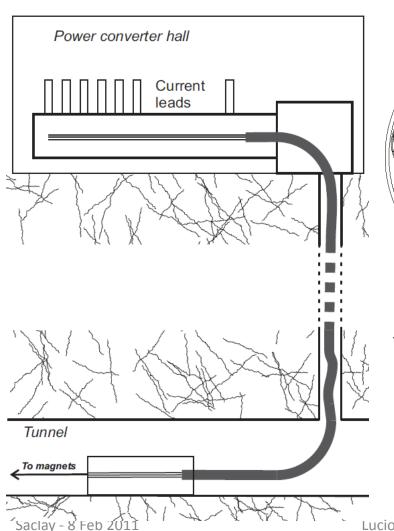
- Crab cavities to rotate the beam and colliding with good overlap
- Providing « easy » way for levelling
- Necessary to fully profit of the low β^*
- Very demanding phase control (better than 0.001°) and protection
- Very compact design

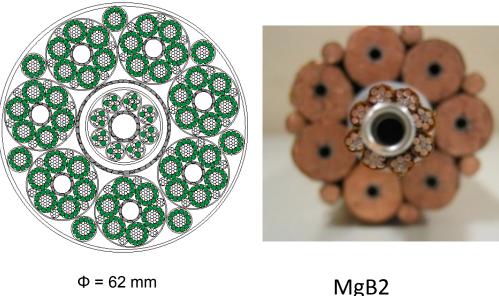
Compact 400 MHz (see 4th LHC CC workshop)



Lucio Rossi @sLHC2011

Saclay - 8 Feb 2011


LHC


pipe2

2/7/2011 R. Assmann

Removal of Electrical Power Converter (200kA-5 kV SC cable, 100 m height)

 7×14 kA, 7×3 kA and 8×0.6 kA cables – Itot~120 kA @ 30 K

Also DFs with current leads removed to surface
Definitive solution to R2E problem
Make room for shielding unmovable electronics
Make much easier maintnance and application ALARA

(or other HTS)

example HI-I HC parameters R*=15 cm

1.15

0.58

7.55

0.55

285

0.65

0.009

19

44.9

15.2

0.2

0.32

57

59, 102

Gauss

25

1.7

50

0.43

Gauss

7.55

0.55

285

0.65

1.1

40

30

12.2

0.1

0.30

58

40, 69

0.0136

1.78

0.91

7.55

0.15

0.0

0.011

10.6

13.9

4.35

0.4

0.62

38, 66

300

95

(508-622)

Gauss

25

3.77

0.95

7.55

0.15

508

2.14

0.010

10.1

189

14.7

4.34

0.3

1.08

300

18, 31

Gauss

50

2.16

1.09

5.0

0.15

508

1.42

0.008

9.0

95

16.8

4.29

0.6

1.30

8, 33

300

Gauss

25

Champic		parc		.c., p	, 10	CIII
parameter	symbol	nom.	nom.*	HL crab	HL sb + lrc	HL 50+lrc

 N_b [10¹¹]

 $\Delta t [ns]$

 σ_z [cm]

β* [m]

 ΔQ_{tot}

 $\tau_{\text{eff}}\left[h\right]$

t_{run,level} [h]

 $P_{SR+IC}\left[W/m\right]$

P[W/m]

 $\underline{\tau_{IBS,z/x}} \; [h]$

 $L_{int}[fb^{-1}]$

 θ_{c} [µrad]

 $\phi = \theta_c \sigma_z / (2 * \sigma_x *)$

 $L [10^{34} \text{ cm}^{-2}\text{s}^{-1}]$

I[A]

protons per bunch

longitudinal profile

rms bunch length

full crossing angle

Piwinski parameter

potential pk luminosity

beta* at IP1&5

events per #ing

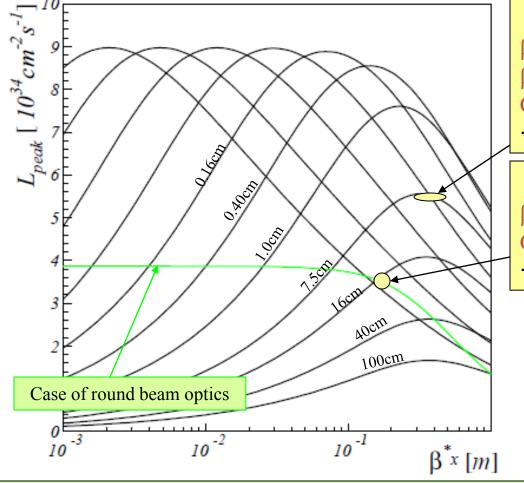
effective lifetime

run or level time

e-c heat SEY=1.2

SR+IC heat 4.6-20 K

IBS ε rise time (z, x)


annual luminosity

tune shift

bunch spacing

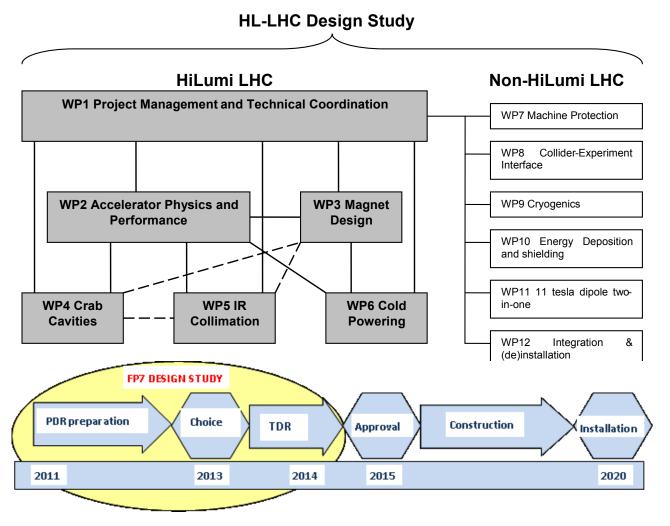
beam current

Luminosity vs. β^* in the Xing plane (with hour-glass effect) for different values of β^* in the other plane: nominal emittance and bunch length, ultimate intensity, no crab-cavity

Example of flat optics:

 $β^* = 30$ cm in the crossing-plane $β^* = σ_z = 7.5$ cm in the other plane $Θ_c = 10σ$ in the plane of biggest $β^*$ → Peak lumi ~5.6 10^{34} cm $^{-2}$ s $^{-1}$

"Equivalent" round optics:

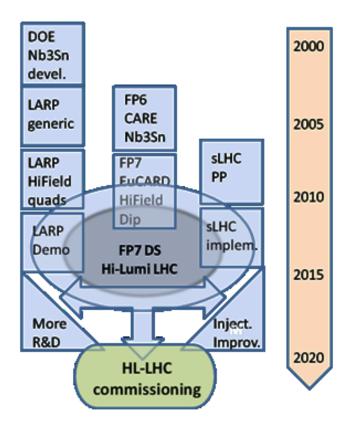

 $\beta^* = 15$ cm in both planes

 $\Theta_{\rm c} = 10\sigma$

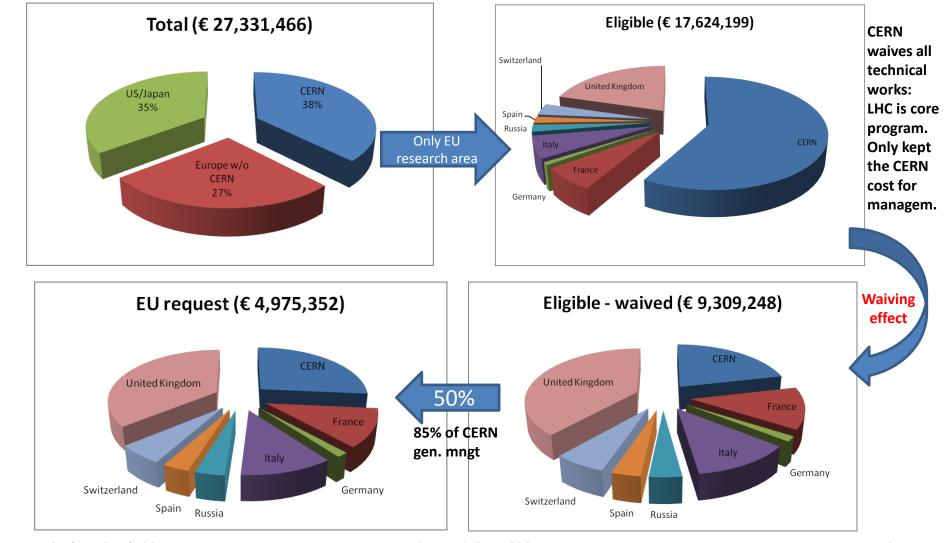
→ Peak lumi $\sim 3.5 \ 10^{34} \text{cm}^{-2} \text{s}^{-1}$

- 1. The "virtual" performance of the two optics is equivalent with crab-cavity (~8-9E34),
- 2. In all cases the two options requires to push β^* well beyond the Phase I limit of 30 cm. ...Nb3Sn can only improve the situation by ~25%, not more!

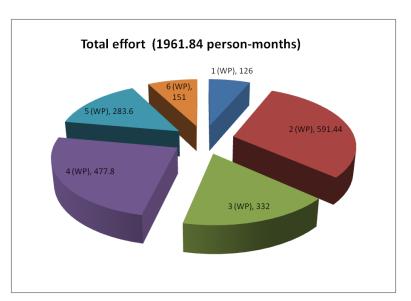
Structure of the project HL-LHC and the HiLumi FP7 Design Study



Large participation application 25 Nov 2010


Participa nt no.	Participant organisation name	Short name	Country
1 (Coord-inator)	European Organization for Nuclear Research	CERN	IEIO ¹
2	Commissariat à l'Énergie Atomique et aux énergies alternatives	CEA	France
3	Centre National de la Recherche Scientifique	CNRS	France
4	Stiftung Deutsches Elektronen-Synchrotron	DESY	Germany
5	Istituto Nazionale di Fisica Nucleare	INFN	Italy
6	Budker Institute of Nuclear Physics	BINP	Russia
7	Consejo Superior de Investigaciones Cientificas	CSIC	Spain
8	École Polytechnique Fédérale de Lausanne	EPFL	Switzerland
9	Royal Holloway, University of London	RHUL	UK
10	University of Southampton	SOTON	UK
11	Science & Technology Facilities Council	STFC	UK
12	University of Lancaster	ULANC	UK
13	University of Liverpool	UNILIV	UK
14	University of Manchester	UNIMAN	UK
15	High Energy Accelerator Research Organization	KEK	Japan
16	Brookhaven National Laboratory	BNL	USA
17	Fermi National Accelerator Laboratory (Fermilab)	FNAL	USA
18	Lawrence Berkeley National Laboratory	LBNL	USA
19	Old Dominion University	ODU	USA
20	SLAC National Accelerator Laboratory	SLAC	USA

HiLumi is the focal point of 20 years of converging International collaboration


- The collaboration wiht US on LHC upgrafe started during the cosntruction of LHC
- EU programs have been instruemntal in federatin all EU efforts
- With Hi-Lumi the coordination makes a step further: from coordinated R&D to a common project
- CERN is not anymore the unique owner, rather is the motor and cathalizer of a wider effort.
- Manged like a large detector collaboration (with CERN in special position as operator of LHC)

Budget FP7 HiLumi

Budget cont.

Personnel for HiLumi by WP

- 1. Manag and Tech. Coord. (6%)
- 2. Acc. Physics and beam
- 3. Magnets for IR
- 4. Crab Cavities
- 5. Collimators
- 6. Sc links

Estimated cost for the the whole HL-LHC over 10 years in M€

	Design in FP7	Extra effort	R&D and	Industrialization		
	HiLumi	for Design	proto	& Construction	ТОТ	Industry
W1-WP6	27	10	50	200	287	160
WP7-12	0	15	30	100	145	80
Other	0	5	10	50	65	40
ТОТ	27	30	90	350	497	280

Conclusion

- HL-LHC project is starting, forming a large international collaboration
- HL-LHC has a flexible plan: however the development of the main hardware is –almost – traced
- HL-LHC builts on the strength and expertise of sLHC
 - For the injectors (that will deliver the needed beam)
 - For the beam studies (fundamental understanding the limitation of Phase 1)
 - For the pushed Nb-Ti technologies for magnets:
 - Essential for Matching Section magnets
 - Important back-up solution for the low- β magnets
 - For the radiation studies, safety aspect and management tools.