

Controls & Monitoring and lts future in MICE

Pierrick Hanlet

17 February 2011

Controls & Monitoring

Purpose:

- Controls refers to:
 - user interface to equipment
 - proper sequencing of equipment
- Monitoring serves to:
 - protect equipment (early notification)
 - protect data quality

Present Organization

Task divided into multiple systems:

- Beamline:
 - Target, magnets, PA, DS, BS, Diffuser
- Particle ID
 - LM,TOF, CKOV, BPM, KL, EMR
- Environment monitoring
 - T, Humidity, radiation, water, He, ...
- DAQ
 - DAQ—CDB—C&M interface, crates, network, ...

Present Organization

Task divided into multiple systems:

- Tracking
 - tracker and spectrometer solenoids
- AFC
 - absorber and focusing coils
- RFCC
 - RF cavities and coupling coils

Organization

How will this organization change for later MICE steps?

Future Organization

Task divided into multiple systems:

Beamline:

- Target, magnets, PA, DS, BS, Diffuser
- Particle ID
 - LM,TOF, CKOV, BPM, KL, EMR
- Environment monitoring
 - T, Humidity, radiation, water, He, ...
- DAQ
 - DAQ—CDB—C&M interface, crates, network, ...
 This is all part of Step I

Future Organization

Task divided into multiple systems:

- Tracking
 Steps
 - tracker and spectrometer solenoids
- AFC
 - absorber and focusing coils

Step IV

- RFCC
 - RF cavities and coupling coils

Step V

Future Organization

So, the division by MICE "Step" is already in the plan

But we're not done with the planning: a major consideration is not yet in place!

Over arching control of C&M and DAQ with state machines defining MICE

Several Considerations:

- 1.Subsystem C&M developed by different collaborators
- 2. Must be integrated to ensure safe use of resources and operations
- 3.MICE operates in different states over differing time periods:
 - 1.Shutdown/Installation
 - 2. Sleep (occasionally over weekends)
 - 3.Testing
 - 4. Data taking

Different states requires different equipment (and data) monitoring requirements:

- ignore many systems during shutdown state
- fewer systems ignored during sleep state
- nothing(?) ignored during data taking
- different parameters during testing or data taking?
- different alarms and different alarm limits
- different parameters and/or frequency to archive

Different configurations:

Must be defined

Must be "tagged" in the CDB

Step IV Example (10,240) run:

Start run will require:

- Set magnet currents
- Set DS currents
- Set PA
- Set diffuser
- Set cooling channel magnets
- Absorber settings(?)
- Verify tracker ready
- Verify BS, DAQ, network ready
- Check hall environment

All from **CDB**

This must be properly planned

Summary

Integration for new systems requires proper planning