What have we achieved with 2010 data taking

- 2010 data taking campaign
 - o goals
 - highligths
- o analysis
 - 。MC
 - 。 Data
 - Comparison

Commissioning the Beam Line: goals

- calibrate detectors
- exercise DAQ

- · understand the beam
 - composition
 - rates
 - momentum scale
 - Ist go at phase space reconstruction
 - (ε,p) runs
 - comparison with beam line model

Commissioning the Beam Line: data taking

- first trials end of 2009

detector calibrations

- long stop due to DK Solenoid issues
- successful 2 months data taking during summer 2010!

MICE STEPI

- Beam Rate vs Tgt depth studies - max. beam loss: 4V maximize μ production while operating in a

parasitic mode

Machine Physics

Over 340000 target actuations / 11M triggers / 917 runs

- upstream triplet scan
- dipoles scan
- downstream triplets scan
- downstream single quadrupole scan
- decay solenoid scan
- M0 data taking
- M1 data taking (also M2,M2+)
- DAQ tests
- On Line Monitoring

Machine Physics [13/8, 15/8] 2010

- -Beam Rate vs Tgt depth studies
- max beam loss: 10V

Scheme of the BL with some of the detectors used for analysis and monitoring

STEPI

- pion → muon beam (high purity)
- tunable in momentum [140, 240] MeV/c within MICE
- ε_N generation [3,10] mm rad within MICE
- match with MICE optics
- control transmission

RAL

matrix of 9 elements in (e,P) space (any generic point can be interpolated)

(ε ,p) matrix (3x3): M_0

- μ purity (D1-D2 interplay)
- select backward going μ (D2)

Beam Line operating modes: TOF0-1 time of flight distributions

PDI ~ PD2 (single momentum – calibration)

PDI ~ $2 \times PD2 (\pi \rightarrow \mu)$

		$p_z \; (MeV/c)$						
		140	200	240				
$\epsilon_N \; (\mathrm{mm \cdot rad})$	3	t=0.0 mm	t=0.0 mm	t=0.0 mm				
		$P_{dif}=151$	$P_{dif}=207$	$P_{dif}=245$				
		α =0.2	α =0.1	α =0.1				
		β =56 cm	β =36 cm	$\beta{=}42~\mathrm{cm}$				
	6	t=5.0 mm	t=7.5 mm	t=7.5 mm				
		$P_{dif}=148$	$P_{dif}=215$	$P_{dif}=256$				
		α =0.3	α =0.2	α =0.2				
		β =113 cm	β =78 cm	β =80 cm				
	10	t=10.0 mm	t=15.5 mm	t=15.5 mm				
		$P_{dif}=164$	$P_{dif}=229$	$P_{dif} = 267$				
		α =0.6	α =0.4	α =0.3				
		β =198 cm	β =131 cm	β =129 cm				

Up Stream Beam Line

GVAI relative counts vs Ist triplet exitation

- Leff revisited in G4beamline after measurement
- better agreement on the right tail
- small impact on down-stream evolution

Down Stream Beam Line

This is the important part:

- we want muons at the right P and with the right Twiss Parameters
- we achieve this by tweaking Q4-5-6 / Q7-8-9

- all in all we need to MEASURE the Phase Space at some point along the BL
- compare it with our simulation
- understand how a variation in an element (say a quadrupole or a triplet) produces a change in the beam
- Exploration of MATRIX ELEMENTS → MARK?
- Study of Quadrupole SCANS → I have some old and newish stuff but difficult to reduce to good pictures, I was still working on it ... maybe Mark has it too

Down Stream Beam Line (Simulation)

We had quite some discussion on the use of maps / Enge Functions / Tanh functions to provide a more realistic field / gradient for the qaudrupoles

In fact in the original G4beamline version the gradients were not right

I am using OPERA maps now

Mark/Chris could comment on G4MICE

G4MICE/G4beamline have the SAME maps available

RAL

G4Beamline @ TOFIUS (muons) (x-x') (y,y') (P)

G4MICE @ TOFIUS (muons) [MONTECARLO TRUTH] (x-x') (y,y') (P)

G4Beamline @ TOFIUS (muons) (x,y) (x,y') (y,x')

G4MICE @ TOFIUS (muons) [MONTECARLO TRUTH] (x,y) (x,y') (y,x')

G4Beamline @ TOFIUS (muons) (x',y') (L=xy'-yx') (L,p)

G4MICE @ TOFIUS (muons) [MONTECARLO TRUTH] (x',y') (L=xy'-yx') (L,p)

DATA Taking Campaign 2009-2010: TOF0, I

TOF0

TOF1

10 x 4 cm scintillating bars 7 x 6 cm scintillating bars

 $\sigma x = 1.15 \text{ cm}$

 $\sigma x = 1.73 \text{ cm}$

 $\sigma t = 50 ps$

 $\sigma t = 50 ps$

[The design and commissioning of the MICE upstream time-of-flight system,

R. Bertoni et al., NIM-A 615 (2010) 14-26]

- Time resolution after calibration:
- TOF0 51ps
- TOF1 62ps
- TOF2 52ps
- Resolution meets design goals for TOFs

RAL

Beam Monitoring

TOF0,1 used in tandem

On Line beam monitoring and Analysis

 $\begin{pmatrix} x \\ x' \end{pmatrix}_{1} = \begin{pmatrix} M_{11} & M_{12} \\ M_{21} & M_{22} \end{pmatrix} \begin{pmatrix} x \\ x' \end{pmatrix}_{0}$ from x0,x1 reconstruct:

M: transfer matrix Infer x0' and x1'

- momentum
- phase space
- Twiss Parameters
- emittance

$$\begin{pmatrix} x'_0 \\ x'_1 \end{pmatrix} = \frac{1}{M_{12}} \begin{pmatrix} -M_{11} & 1 \\ -1 & M_{22} \end{pmatrix} \begin{pmatrix} x_0 \\ x_1 \end{pmatrix}$$

CM29

- triplet Q789 is scaled in current
- phase space rotation is reconstructed using TOF0, I stations
- comparison with G4Beamline simulation
- results are VERY PRELIMINARY
- still need to introduce the survey corrections

NOTE:

- TOFs are not simply used as PID detectors
- They give direct information about beam properties and momentum

-20

-30

-40

x (mm)

Q789 = -10%

-20

-30

-40

Physics Case

100

y (mm)

100

50

150

200

250

300

350

P (MeV/c)

RAL

CM29

Reconstructed TOF Track Rate

Rates are normalized with respect to the Beam Loss from Sector 7

TOF tracks/3.2 ms spill/V.ms

~ 4.8 tracks / spill / V.ms

~ 27.2 tracks / spill / V.ms

M0		μ^- rate			μ^+ rate		
		$P_z (MeV/c)$			$P_z (MeV/c)$		
		140	200	240	140	200	240
$\epsilon_N \; (\mathrm{mm\cdot rad})$	3	4.1	6.3	4.9	16.8	33.1	33.0
		± 0.2	± 0.2	± 0.2	±1.8	± 3.2	± 2.6
	6	4.1	4.8	4.5	17.8	31.0	31.7
		± 0.4	± 0.2	± 0.2	±1.8	± 2.0	±2.0
	10	4.6	5.4	4.4	21.6	34.0	26.1
		± 0.2	± 0.2	±0.1	± 2.2	± 2.5	± 1.5

WHAT WE ACHIEVED THEN

- good MEASURED knowledge of the beam (maybe VERY good, MARK?)
- better knowledge of BL geometry after surveys (some corrections still to be implemented in the simulation(s))
- good agreement MC/DATA:
 - understood maps for G4Beamline Q456789
 - some discrepancy G4Beamline/G4MICE persists ... why?
 - not clear how (good) muons are defined in G4MICE and if comparison is fair
 - the discrepancy in momentum (3-4 MeV/c) makes me think of a poor definition of the Cherenkov material budget in G4Beamline (I believe G4MICE is more detailed)
 - we did not have time to scrutinize the differences between the two
- how do we control the momentum scale?
 - when D2 is set to P2, do we really get it? Any bias?
 - did not analysed, may be we need to re-do a measurement if possible
 - comment from Mark?
- can we "forge" the beam at our convenience?
 - yes to some extent: scan runs tell us how to modify e.g. Q789 to rotate the beam in phase space
 - in practical terms this is not a fast procedure at the moment

- is the beam optimized as we wanted?
 - did not complete this, in the sense we did not check in detail if Ph-Space at TOF1US IS the one we expect from a certain configuration (I might be wrong, maybe Mark did it)
- we measured emittance (Mark's plot) and it seems a bit higher than thought ...
- we achieved to measure the track reconstruction rate and assessed a factor ~5 difference between the +/- configurations