Spectrometer solenoid quench protection

MICE Collaboration Meeting #29 Rutherford Appleton Laboratory

Soren Prestemon
Lawrence Berkeley National Lab

Outline

- Major recommendations from reviewers
- Review of protection circuitry
- Review of simple Wilson-code analysis
 - Simulation results: predictions and caveats
- Key protection issues
 - Protection resistors: value and design
 - HTS leads: discussion
- Status of 3D analysis

Review

- The review committee recommends:
 - to continue the analysis of the quench protection system, including Coupled transient magnetic and thermal calculations, eddy currents in the Aluminium mandrel, external circuits with shunt resistors.
 - Investigation of different quench scenarios and definition of the hotspot temperatures of coils, leads and shunts.
 - Definition of peak voltages: to ground, and layer to layer.
 - Definition of the optimal shunt resistor values for all coils to reduce risk.
 - Definition of the allowable peak operating current to eliminate the risk of coil damage.
 - Measurement of the leakage current to ground for each coil, to check the status of electrical insulation.
 - Limitation of the test current to 200 A until all points above are verified and understood.
 - Design of the magnet test procedure ensuring a minimal risk of cold mass damage.

Review of Spectrometer protection circuit

Protection circuit: diodes+resistors

- 3-5V forward voltage drop
 - Forward voltage drop decreases as temperature of diodes increases
- Resistor: strip of Stainless Steel
 - Designed to comfortably support bypass current during "normal" quench decay (~6s)
 - Temperature rise during ~6s decay is <~300K

Simple Wilson-code calculations

- Basic input parameters:
 - Cu:SC=3.9
 - Fractional areas: Copper: 69%; SC: 17.7%; insulation: 13%
 - Area of unit cell (1 turn): 0.0178 cm²
 - Relative transverse propagation velocities: 1%

Turn and geometry info

_								
		R1	R2	Z1	Z2	Turns	I [A]	Je[A/mm2]
	M1	0.258	0.3027	3.5104	3.7116	5040	269.6	151.11
	M2	0.258	0.2878	3.9513	4.1508	3332	245.3	137.5
	E1	0.258	0.3176	4.3957	4.5063	3696	227.2	127.37
	С	0.258	0.2793	4.5439	5.8582	15680	268.1	150.15
	E2	0.258	0.324	5.8957	6.0063	3960	253.4	137.48

Inductance matrix

Coil	M1	M2	E1	С	E2
M1	15.68				
M2	1.14	6.84			
E1	0.31	1.01	10.48		
С	0.28	0.57	3.50	43.77	
E2	0.02	0.02	0.05	3.79	12.01

Wilson code results

- Note: transverse propagation was "tweaked" to ~match 5s decay time for case "C alone"
 - Sensitivity of derived values, e.g. Tmax and Vmax, is not strong
 - Peak dI/dt~40A/s

Hot-spot temperature and Peak internal voltage

Code limitations:

- No quench back
- Transverse propagation "fit"
- "Lumped" stored energy; real quench events more complicated
 - Actual hot spot temp significantly lower, due to bypass current
- No detailed information on size of resistive zone, voltage gradients

Protection circuit: test condition

- Circuit with most stored energy
- If a quench occurs in E1:
 - Current shunts via diode+resistor across E1
 - Coil current in E1 decays
 - Coil currents in neighboring coils increase
 - Due to mutual inductance
 - Probably also generate bypass currents
 - Other coils either...
 - Quench very likely, due to quenchback
 - Remain superconducting
 - Current continues to decay due to bypass resistance, but with very long time constant
 - Most likely to occur due to low-current quench, when significant margin available

Protection resistors: temperature rise

- Characteristic quench decay time ~5s
 - M. Green, from experiment
 - Geometry: ~20cm long, 2cm wide, 0.35mm thick (need to check with vendor)
 - Assume all current in bypass:
 - => Tmax<300K
- Possible concerns:
 - Anomalous quench scenarios
 - Is 0.02Ω optimal (define)
 - Power supply not shut-off

HTS leads

- Protection concept:
 - First: avoid quench by providing margin!
 - No energizing until high-end temp. sufficiently low
 - Second: trigger spin-down if issue arises
 - Interlock PS to high-end temperature
 - Interlock PS to voltage drop
 - Third: make access to HTS leads "reasonable"

– Other: how fast di/dt is needed to protect quenching leads?

3D simulations

- Limitations of "Wilson code" simulation:
 - Does not consider mutual coupling and full electric circuit
 - Does not take into account quenchback from mandrel heating
 - Does not provide means of determining turn-to-turn or layer-to-layer voltages
- Vector Field Quench module:
 - Provides the above info
 - Can use "Wilson-code" for validation on simple system (e.g. single coil with no quenchback)

Status of 3D simulations

- Material properties are defined
 - Specific heat:
 - Cu, NbTi, Al6061
 - Thermal conductivity:
 - Cu, Al6061
 - Coil effective bulk longitudinal and transverse
 - Jc(B,T) of NbTi conductor
- Electric circuit for series test configured
 - Allows diode + resistor
 - Other (e.g. operational) configurations easily produced
- First 3D model simulations underway
 - checking quench initiation process
 - Calibrating code with Wilson code

Planned simulations

- Code validation:
 - Comparison with Wilson code for single coil case
- Evaluate current fluctuations, decay, voltages, hot-spot temperature throughout circuit in:
 - Test configuration
 - Operating configuration
- Evaluate role of quench-back from mandrel:
 - Temperature rise and distribution in mandrel during a coil quench

3D model

Soren Prestemon -- Lawrence L.....

Goals of simulations

- Main questions to be answered by 3D simulations:
 - What are the maximum turn-to-turn and coil-to-ground voltages seen during a quench?
 - Are there scenarios where a subset of coils quench, but others remain superconducting, resulting in slow decay through bypass diodes and resistors?
 - What dI/dt will be "certain" to generate quench-back?
 - What modifications to the existing system should be incorporated to minimize/eliminate risk to the system in case of quench

General approach towards repair

- Address reviewer concerns
 - essentially same as the project team's
- Use simulations to guide final decision on protection system repairs
 - Allow repair strategy to crystallize based on results
- Develop clear strategy for protection modifications
- Develop test and operational controls to support magnet protection

