

Cooling Channel Magnet Certification Plan

Pierrick Hanlet

16 February 2011

Purpose

Guiding Principle:

Errors in field map <u>must not</u> contribute significantly to emittance measurement errors.

 Measured field map will be converted to G4MICE field map for analysis

Purpose

Characterization of magnets Two Sets of Measurements

- •At vendors:
 - **▲Determine magnets operate according to specifications**
- In situ in MICE hall
 - **▲real configurations & real environment**
 - Acheck field alignment
 - Acheck field uniformity
 - Acheck field consistent with Maxwell
 - **▲fringe fields**

Purpose

Additional reasons:

- Determine if simulation matches data
- Fringe fields
 - Force models
 - Nearby equipment (pumps, electronics, ...)
 - Global tracking
- Relative and global alignment

Scale with fixed hall probes

Tasks - before mapping

Software readiness:

- Convert map to G4MICE map
- Tests for map:
 - Superposition
 - Relative alignment of magnetic and geometric axes
 - Field uniformity
 - Field consistency with Maxwell's equations
 - ◆ Emittance errors introduced
 Pierrick M. Hanlet 16 February 2011

Tasks - before mapping

What do we need to know?

- How do we quantify field error contributions to emittance?
 - Uniformity, positions, magnitudes
- What can we do analytically?
- What simulations do we need?
- How to convert map to G4MICE map?
 - Introduce conversion errors?
 - What grid step size?

Tasks – at vendors

At vendors (coarse grid):

- Measure each coil separately
- •Measure at 0.25, 0.5, 1.0, 1.1 xI_{max}
- Measure 5 coils (at 0.25, 0.5, 1.0, 1.1 xI_{max})
 - Convert map to G4MICE
 - Checks:
 - Superposition
 - Alignment of magnetic and geometric axes
 - Field uniformity
 - Verify Maxwell's equations

Vendor Mapping Grids OF TE

- 10cm longitudinal steps
- 20° angular steps
- SS 5(4) coils at 4 currents + all coils
 - 20 configurations
 - 7 days
 - FC coils at 4 currents + two coils
 - 12 configurations
 - **→** 2.5 days
 - CC coils at 4 currents
 - 4 configurations
 - **→ 1** day

Vendor Measurements of

In all that follows, I propose 2 sets of rails:

- 1 at RAL and 1 to move between vendors
- Vendor measurements are intended to check that magnet operates according to specifications – this is best done when magnets are operated in final configuration with full control system

Conclusions

- Measurements differ: (vendor & MICE)
- Mapping is necessary to certify magnets
- Preliminary task list under way
- Must have full control system for vendor measurements