Spectrometer Solenoid Update

MICE Collaboration Meeting #29 Rutherford Appleton Laboratory

Steve Virostek

Lawrence Berkeley National Lab

Topics


- MICE technical review
- Responses to committee report
- Magnet analyses
- Design modification plan
- MAP Tech Board
- Schedule, budget and manpower
- Current Status

MICE Cooling Channel Layout

Spectrometer Solenoid #1

MICE Technical Review

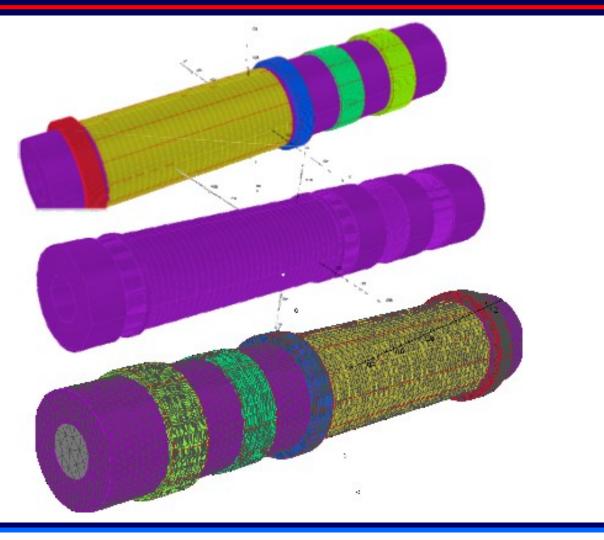
- An assessment and analyses of various aspects of the magnet design has been carried out by LBNL
- A preliminary design modification plan was presented to a MICE technical review committee on 10/27/10
- Preliminary comments were received from the committee on 11/22/10
- The committee's final report with recommendations was issued on 12/14/10

Responses to Committee Report

- The committee report includes a series of recommendations for the Spectrometer Solenoid team
- The LBNL team has reviewed the recommendations and has prepared preliminary responses that are detailed in a separate document
- The committee recommended that an active quench and lead protection system be implemented on the magnets
- LBNL is conducting a series of analyses to determine whether or not an active system will be necessary
- Other recommendations related to the heat load calculations are currently being undertaken at LBNL

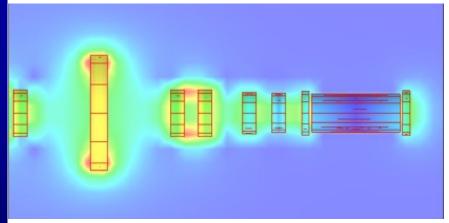
Heat Load Analysis

- The heat leaks due to the dominant static sources have been re-evaluated
- The focus of the calculations was the heat leaks into the 4.2K cold mass as these directly relate to the issue of LHe boil-off during operation
- Other aspects of magnet thermal performance including heat loads on the shield and vacuum insulation have also been considered
- The dynamic heat loads that occur during cooldown or current ramp-up when the magnet system is not in equilibrium have been ignored as they are negligible during long-term operation

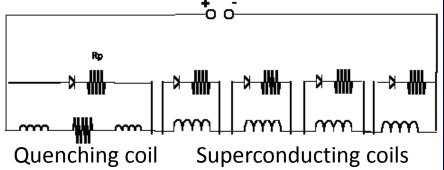

Electromagnetic Calculations

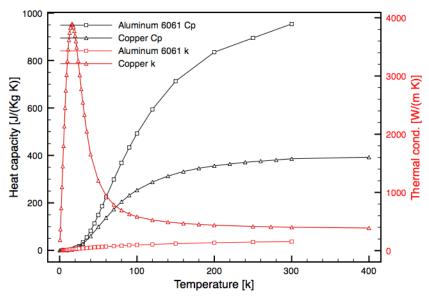
- The design of the passive magnet protection system is being reviewed and analyzed under the various operational regimes
- The areas covered include:
 - Peak voltages to ground and inter-layer
 - A more clear understanding of coupling between coils during various quench scenarios
 - A detailed estimate of the current decay and current seen by the shunt resistors, and feedback on possible improvements to the selected resistance values
 - An estimate of the role of quenchback from the Al mandrel
- The suitability of the existing passive quench protection system and the possible need for an active system is being assessed

Spectrometer Solenoid 3D EM Model



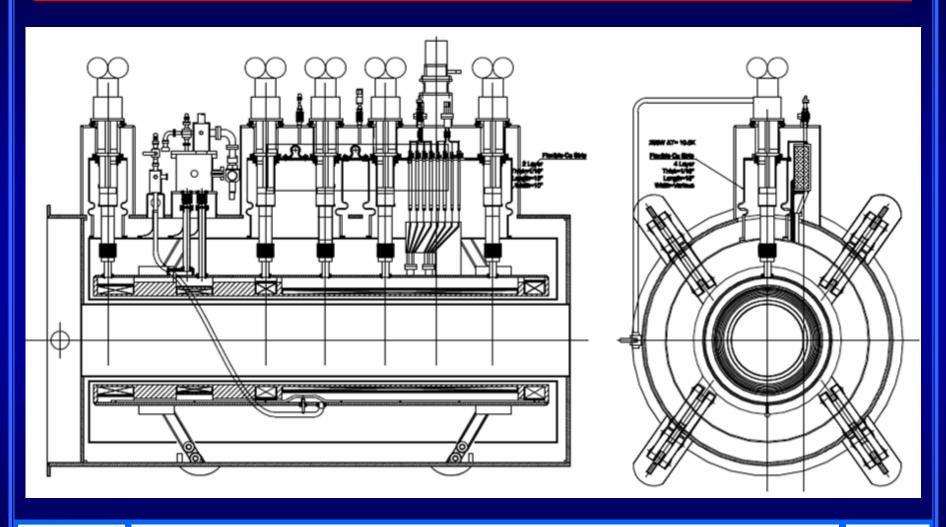
Quench Modeling


• VF quench code:


- Allows simulation of...
 - Quenchback (e.g. from Al. mandrel)
 - Various circuit configurations
- Provides access to...
 - Temperature and voltage evolution in time and space
 - Current distribution and decay

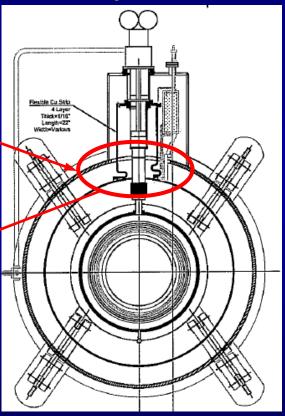
Distribution of field

Example circuit of spectrometer test sim.


Design Modification Plan

- A preliminary design modification plan has been developed by LBNL. The plan includes the following:
 - reduction of heat leaks to the cold mass
 - the addition of more cryo cooling power
 - assessment of the suitability of the passive quench protection system
 - modification of the LTS leads to prevent burn-out
- The plan has been detailed in a separate document
- The plan will be finalized once the quench analysis and design modification (if necessary) are complete

Proposed 5 + 1 Cryocooler Layout



Radiation Shield Improvements

- The modification plan includes improvement of the connection between the 1st stage of the coolers and the shield as well as enhanced conduction to the cold mass support intercepts
 - Pure aluminum bands welded at either end of the shield reduce intercept temperature
 - Copper transition plates welded to the top of the shield increase the thermal conductivity from the coolers

MAP Tech Board

- Preliminary plan presented to MAP TB on Jan. 11
- Several comments arose from the meeting:
 - A coupled quench analysis should be carried out with all MICE magnets in place
 - The effects of stray fields on the coolers (particularly the 1-stage GM) and the need for local shielding needs to be assessed
 - The means for protecting the leads in a power outage needs to be established
- The possible concept for an active quench protection system was questioned
 - A system using heaters may be inadequate
 - A design study will be conducted if an active system is needed

Schedule, Budget and Manpower

- A detailed straw man schedule has been assembled based on LBNL experience that provides a compilation of the tasks with an estimate of the required durations
- A final, resource loaded schedule will be developed with the vendor once the repair plan is complete
- An estimate of the remaining costs to MAP to complete the Spectrometer Solenoids has been compiled, including both manpower and hardware
- Contingency was estimated to account for uncertainties, including the possible need for active quench protection
- Required manpower has been identified and is available

Budget Estimate (MAP cost)

Manpower	% Time*	Туре	\$/hr	Total (k\$)
Analysis	25%	Cryo Engnr	160	53
Design Mods	25%	Cryo Engnr	160	53
Management	25%	Sr Mech Engnr	200	67
Fab Oversight	30%	Sr Cryo Engnr	140	56
Fab Oversight	30%	Mech Engnr	150	60
Quench prot/Pwr sup^	12%	Cryo Engnr	200	32
Controls+	20%	Elec Engnr	150	40
Testing/Training	12%	Sr Mech Engnr	200	32
Testing/Training	12%	Mech Engnr	150	24
Documentation	12%	Sr Mech Engnr	200	32
Documentation	12%	Mech Engnr	150	24
Travel FNAL-LBNL#				10
Fab/Procurement	Qty	Unit	\$k/ea	Total (k\$)
Cryocoolers (PT415)	1	ea	53	53
Contract Mods	2	magnets	25	50
Training Utilities	2	magnets	21	42
Training Cryogens	2	magnets	20	40
Shipping to RAL	2	ea	20	40
Supertrameter Calancid Tatala.				

Spectrometer Solenoid Totals: 708
Contingency: 254

^{*} average % time effort over the next 8 months

[^] manpower help from FNAL

⁺ manpower help from RAL and Daresbury

[#]personnel from FNAL for testing/training

Manpower

The following individuals are part of the Spectrometer Solenoid team:

Steve Gourlay - LBNL AFRD Division Director

- LBNL technical contact for Spectrometer Solenoid and Coupling Coil magnets
- oversight of the LBNL Spectrometer Solenoid team
- contact for the DOE Office of High Energy Physics

Steve Virostek - Sr. Mechanical Engineer

- overall project management
- some oversight of magnet assembly
- magnet training oversight
- documentation

Tapio Niinikoski - Sr. Cryogenic Engineer

- CERN retiree, hired 1/2 time by LBNL
- magnet design analysis
- design modification recommendations
- some oversight of magnet assembly
- magnet training oversight

Roy Preece - Mechanical Engineer (RAL)

- oversight of magnet assembly
- magnet training oversight
- integration and documentation

Nanyang Li - Mechanical Engineer

- oversight of magnet assembly
- magnet training oversight
- documentation

Soren Prestemon - Cryogenic Engineer

- magnet design analysis
- design modification recommendations
- occasional oversight of magnet assy

Vladimir Kashikhin - Cryogenic Eng. (FNAL)

- quench analysis
- quench and lead protection design
- Power supply systems

Current Status

- The electromagnetic and heat load analyses are under way and expected to be completed in the coming days
- The quench and lead protection issue presents a major uncertainty in the completion of the plan
- Upon finalizing the modification plan, the Spectrometer Solenoid team will present the plan to MAP and subsequently the MICE tech board
- LBNL has been meeting with the vendor to begin preliminary work (approved by MICE) and to ensure the project restarts promptly when the plan is complete

