SOLID ABSORBERS

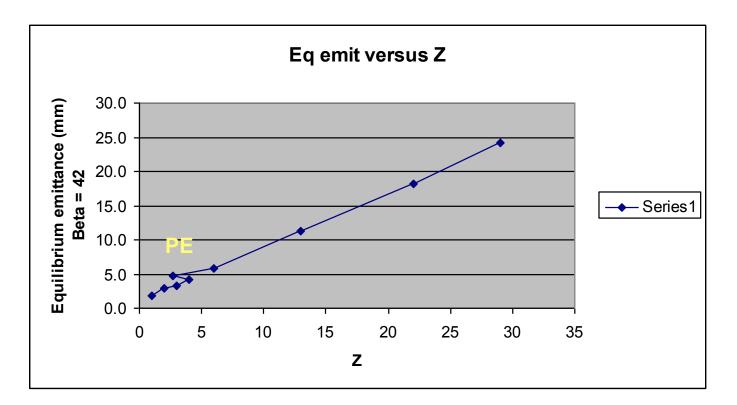
- 1. Measure equilibrium emittance & check cooling formula
- 2. Check equilibrium emittance well-described by $\beta / (X_o dE/dX)$
 - If that's true, know how to describe some arbitrary material
 - Need some lever arm in Z
- 3. Poorish measurement of dE/dX
 - Energy resolution ~ few MeV in 226 MeV cf ΔE ~ 10 MeV
 - Need track length correction
- 4. No useful measurement of 'Landau' distribution
- 5. May be able to measure X_o from increase in trace emittance ??

GENERALITIES

- STEP IV has no RF
 - But cooling doesn't need RF
- Opportunity to give good workout of cooling formula
 - Dependence on:
 - Beta
 - Material via X₀ and dE/dX
 - Also observe growth of L_{canon}
 - Absorber should be where B = 0 to avoid growth of L_c
 - Compare Flip and Solenoid modes
- Study one absorber material in detail
 - Measure equilibrium emittance of others
- Choose absorber for detailed study in middle of emittance range of beams, i.e. $\varepsilon_0 \sim 6$ mm

HOW TO CHOOSE MATERIALS?

- Materials should be:
 - 1. Cheap
 - 2. Benign
 - 3. Enough range of Z to get useful lever on physics quantities:
 - Equilibrium emittance
 - $X_o(?)$
- Some estimates follow

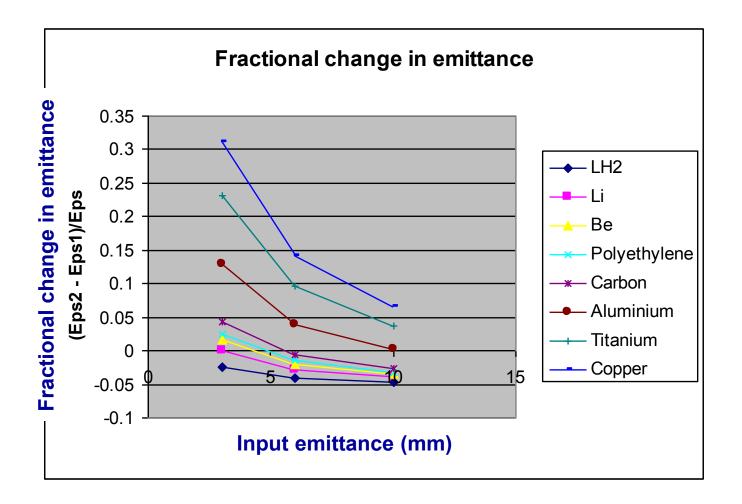

MATERIAL PROPERTIES

		dens	X0	dE/dX	t(10 MeV)	Mass	Eq-emit
	Z	gm/cm^3	g/cm^2	MeV/(g/cm^2)	cm	kg	mm
LH2	1	0.0708	61.28	4.034	35.0	<u>1.75</u>	1.8
LiH	2	0.82	79.62	1.897	6.4		2.9
Li	3	0.534	82.76	1.639	11.4	4.31	3.2
Be	4	1.848	65.19	1.594	3.4	4.43	4.2
Poly E	2.67	0.935	44.64	2.076	5.2	3.40	4.7
С	6	2.265	42.7	1.745	2.5	4.05	5.8
Al	13	2.7	24.01	1.615	2.3	4.38	11.2
Ti	22	4.54	16.17	1.476	1.5	4.79	18.2
Cu	29	8.96	12.86	1.403	0.8	5.04	24.1

Thicknesses chosen to give $\Delta E \sim 10 MeV$

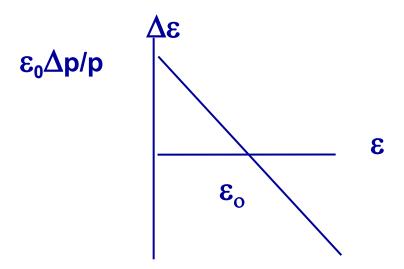
All properties straight from PDB

Masses calculated for 300mm diameter = LH₂ absorber (LiH will be 450mm → Mass = 8.4kg)



For β = 42 cm

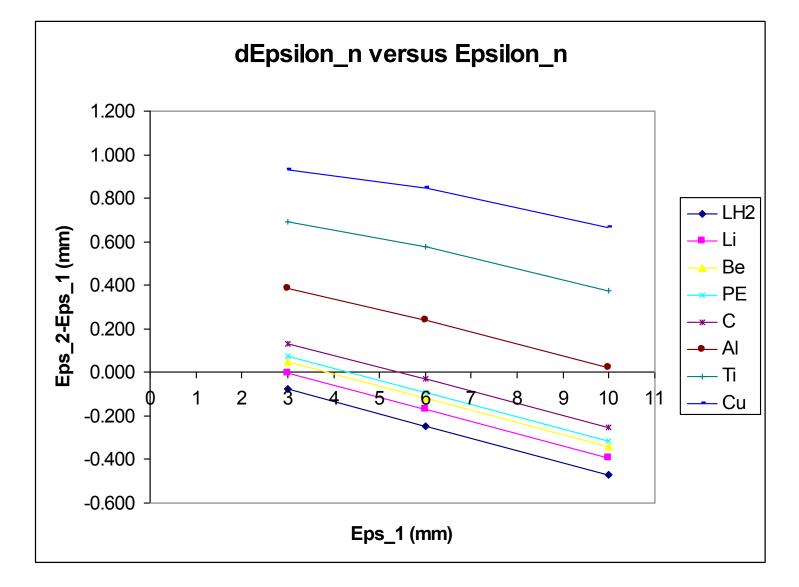
Not sure where to plot compounds such as polyethylene


Materials up to Z ~ 12 will both cool & heat

Aluminium (Z = 13) and above will heat even a 10mm beam

We usually plot $\Delta \epsilon / \epsilon$ versus ϵ

Not necessarily the best way



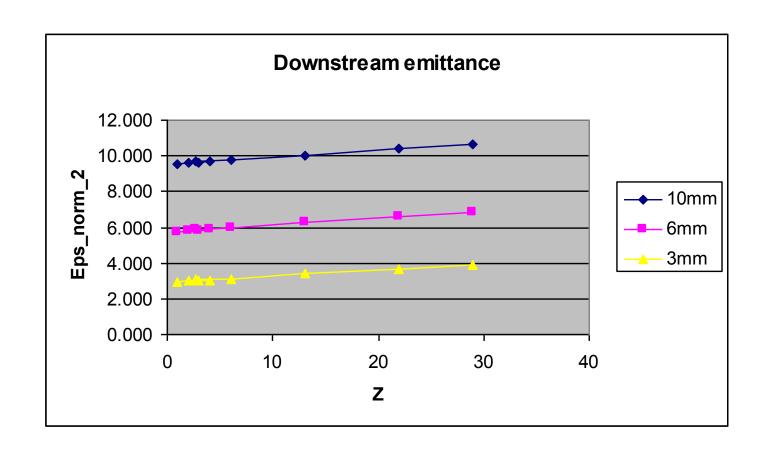
For thin absorber can write cooling formula as:

$$\Delta \varepsilon = -\varepsilon (\Delta p/p) + \varepsilon_0 (\Delta p/p)$$

where ε_0 is equilibrium emittance

Straight line plot; intercepts give $\varepsilon_0 \Delta p/p$ and ε_0

Beta = 42cm
Note that LH₂ has no windows → bit higher
LiH not shown


COMMENTS (1)

- Be ~ Polyethylene
- Ti & Cu look a bit heavy to give useful measurement of ε₀
 - ε_0 rather high \rightarrow long extrapolation
 - May be other (matching) problems (see TC's talk)
 - But could be done
- Rather like Carbon because equilibrium emittance ~6mm
 - Heats 3mm, does nothing to 6mm, cools 10mm beams
- (How do we know Beta at absorber?
 - Evolve from trackers is only way)

COMMENTS (2)

- Suggest sufficient set is LH₂, LiH, C and Al
 - Could add / use PE in place of C
 - No solid elements with 6 < Z < 13 except Na and Mg (Z = 12)
 - Compounds like PTFE?
 - Not sure what we would learn
- May be worth running with 20MeV's worth of C (or PE)
 - i.e. Twice the thickness
 - Bigger effects
 - Depends on matching into downsteam SS/Tracker-2
- If we really want to explore higher Z
 - Crank up magnets to reduce beta by factor ~2 or more
 - Equilibrium emittance drops by same factor
 - Terra incognita

THE END

