Accelerator Tools - Status

Chris Rogers,
ASTeC,
Rutherford Appleton Laboratory

4

G4MICE Accelerator Physics

- Simulation
 - Renovation of multipole field map
 - Implementation of physics list tests
- Optics
 - New PolyFit algorithm
- Analysis
 - Python tools XBOA
- Each topic is probably ~ 1 hour talk

G4MICE

- Simulation
 - Renovation of multipole field map
 - Implementation of physics list tests
- Optics
 - New PolyFit algorithm
- Analysis
 - Python tools

Multipole field map

- Issue with QC field map
 - Generated in ancient history by Opera3d
 - Non-physical dipole field was found on axis
- Fall back to analytical model for multipole field
 - Scalar magnetic potential like:

$$V_{n} = \sum_{q=0}^{q_{m}} \sum_{m=0}^{n} n!^{2} \frac{G^{(2q)}(s)(r^{2} + y^{2})^{q} \sin(\frac{m\pi}{2})r^{n-m}y^{m}}{4^{q}q!(n+q)!m!(n-m)!}$$

- G(s) is some function that tells how the field gradient drops along the axis
- r is horizontal displacement, s is longitudinal displacement, y is vertical displacement, n indexes pole type (dipole, quad, sextupole, ...)
- Recursion relation from Div B = Div (Grad(V))=0 to get magnetic field off axis
 - i.e. apply Maxwell's laws
- Algorithm was unfortunately broken and as I dug, it became clear major refurbishment was necessary

Multipole field map [m/L] zp/^Agp dB_y/dz [7/m] - Opera3D x=1.0 Tanh E=2 x=160.0 Opera3D x=85.0 Tanh E=4 x=160.0 Opera3D x=170.0 Tanh E=6 x=160.0 ----- Enge x=1.0 ----- Enge x=85.0 0.8 8.0 ---- Enge x=170.0 ----- Tanh x=1.0 0.6 0.6 Tanh x=85.0 0.4 Tanh x=170.0 0.4 0.2 0.2 200 600 800 1400 1600 1800 2000 200 400 600 800 1200 1400 1600 1800 2000 400 1200 1000 1000 z [mm] z [mm]

Multipole Model Status

- Implemented
 - Enge model
 - I regard this as too slow needs some optimisation work
 - Tanh model
 - Acceptable speed
 - 1e3 μ
 - 6 quads
 - 10 m channel
 - 10 mm step size
 - Takes ~30 s on my laptop
 - Further optimisation is possible if it's required
- New code is reasonably well commented
- ~30 Unit tests implemented in gunit test framework
- Application tests in Integration/Simulation/Multipoles
 - Fire neutrons through field map and look at field reported in VirtualPlane output
 - Compare reference output with new output with tolerance 1 mT

Physics List tests

MICE

- G4MICE was previously not able to simulate pions
 - Physics processes loaded had some problem with hadronic interactions
- Implement G4 physics package
 - Default is QGSP_BIC
- Make physics list regression tests
 - Compare versions against some reference version
 - Apply Kolmogorov-Smirnov test to determine if distributions are the same
 - Produce reference plots posted to web
- Code can be run against G4MICE, ICOOL, G4Beamline, etc

Optics::PolyFit algorithm

- Fundamental problem in (low intensity) accelerator physics is to find mapping that transports particles from some point at z₁ to some other point at z₂
 - From this mapping, we can transport beam ellipses etc
- Optics TrackingDerivative algorithms calculate Jacobian numerically, dx_{out}/dx_{in}, dp_{out}/dx_{in}, and so forth
- Allows us to calculate transfer matrix directly from Geant4 tracking
 - Nice test -> Are (complex) eigenvalues on unit circle
 - Allows to transport beam envelopes
 - Allows to transport single particles
- New algorithm PolyFit has now been implemented

Optics::PolyFit algorithm (2)

- New algorithm PolyFit has now been implemented
 - Here we fit a polynomial to tracking output
 - So we generate a polynomial (time,x,y,px,py,energy)_{out} as a function of (time,x,y,px,py,energy)_{in}
 - Use PolynomialVector arbitrary order, arbitrary dimension polynomial routine
 - With arbitrary order LLS fitting
- Idea is to find higher order terms in the transfer map
 - TrackingDerivative is not really stable beyond the linear mapping
 - Inputs:
 - step size
 - tolerance in residuals between tracked data and mapped data
 - polynomial order
 - Dynamically seeks a transfer map with appropriate properties

Optics::PolyFit algorithm (3)

- E.g. for 6D (right)
 - Amplitude of the residual vs amplitude
 - Amplitude of the residual is amplitude of distance between mapped particles and actual particles (in 6d)
 - For some RF/magnet lattice
- Get some improvement from 2nd order
 - No improvement really at 3rd order
- Nice tool for e.g. comparing measured data transfer matrix with calculated transfer matrix

Introducing XBOA

- MICE analysis software requirements
 - Physics analysis routines for MICE control room
 - Beta, alpha, emittance, plotting
 - Need fast turnaround of plots
- Current physics analysis routines are not fit for purpose
 - Written by some rubbish graduate student as a first coding project
- Instead use XBOA physics analysis library
 - ~ few thousand lines of code
 - Good test coverage
 - Well documented (function-by-function + worked examples)
 - Local expertise
 - Written by some rubbish RAL staff guy
- Allows for quick and dirty physics analysis online

Accelerator Side workplan to 2012

MICE

- Most functionality is already in place
 - So structure looks rather flat (dependencies are already "done")
 - Still a lot to do
 - Additional tasks:
 - MAUS integration not listed but is expected to be ~ 2 months work and is not listed
 - Arbitrary 3D meshing routines for measured field maps need to go in

Final comment

- Significant amount of development work in last 4 months has been bug fixing
 - Either we have most of our functionality in place
 - Or most of our code is broken
- Focus on improving test coverage and analysis routines