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Continuous Integration (CI)

● CI is widely accepted as the best way to create large-
scale software in a collaborative environment

● In its most basic form you use a service which 
monitors the version control system, then builds 
your code and runs specified tests

● The CI server watches for changes in the source code 
repository and builds whenever something changes

● The CI server continuously reports on the build status



  

Continuous Integration (CI)
● Owning an exercise bicycle doesn’t make you fit (I 

wish)

● Likewise having a CI server doesn’t mean we’re 
doing CI – CI is a discipline!

● To do CI we have to check-in our code almost as 
often as we hit the save button

● You will probably check-in your incremental changes 
daily but more frequently is good

● Hence integration goes from being “a big deal” to “a 
non-event”



  

Continuous Integration (CI)

● A failed build is one that doesn’t compile, 
lacks a dependency, has a failed unit test

● The CI server can be configured to fail a build 
when there are compiler warnings and it is 
proposed to do this.

● We can also configure the CI server to run 
additional scripts such as test coverage 
scripts, style-guide scripts, etc.



  

CI and unit tests

● The CI server will run your unit tests and 
display the messages accordingly

● A failed unit test means it’s found something  
that would have bitten either you or 
somebody else at some time in the future

● Which is a good thing.  
● So we should not be embarrassed about tests 

which fail: it’s good to see you use them and 
it’s good they’re finding stuff out for you! 



  

Essential rules of CI

● When the build has failed (compiler error, 
dependency error, unit test failure) it’s you 
who must fix it or you must revert

● No-one should check-in on top of a broken 
build – compounds the problem

● You should run all commit tests locally
● Make sure your commit tests all pass before 

starting new work
● Revert if necessary to keep the main-line clean



  

Bazaar

● Starting with MAUS, we are using a distributed 
version control system (DVCS) called Bazaar

● Bazaar is written in Python

● With a DVCS you don't need to be on-line to commit 
(work on the train, in a cave)

● Theoretically, no need for a backup (ideally everyone 
has the master copy)

● You can also run a local copy of the currently 
preferred CI server, “Jenkins”, and integrate Bazaar



  

Jenkins (was Hudson)
● As of MAUS, we are using Jenkins as the CI server. 

Chris Tunnell has already set this up here: 
http://christesting.streiff.net/

● Jenkins monitors anything checked in using Bazaar

● Jenkins is easy to install: java -jar jenkins.war

● In the “configure” link, you can choose the Bazaar, 
TestLink (automates tests, e.g gtests) and many 
other  plugins

● Thus it’s relatively easy to create you own local 
environment to run local commit tests

● We are still trying Jenkins out but it looks good so far

http://christesting.streiff.net/


  

Google Testing Framework (gtest)

● gtest is based on xUnit, which is a port from 
JUnit

● TEST(testCaseName, individualTestName)
● Can group a set of tests by testCase
● Can reuse tests using fixtures
● For more information see: 

http://code.google.com/p/googletest/wiki/Documentation

● See also Chris Rogers' examples on G4MICE
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Google C++ Testing Framework
(aka Google Test)

• What it is
o A library for writing C++ tests
o Open-source with new BSD license
o Based on xUnit architecture
o Supports Linux, Windows, Mac OS, and other OSes
o Can generate JUnit-style XML, parsable by Hudson 

[Jenkins]
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Simple tests

• Simple things are easy:
• TEST() remembers the tests defined, so you don’t have 

to enumerate them later.
• A rich set of assertion macros

 // TEST(TestCaseName, TestName)
 TEST(NumberParserTest, CanParseBinaryNumber) {
    // read: a NumberParser can parse a binary number.

    NumberParser p(2); // radix = 2

    // Verifies the result of the function to be tested.
    EXPECT_EQ(0, p.Parse("0"));
    EXPECT_EQ(5, p.Parse("101"));
 }
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Reusing the same data configuration

• Define the set-up and tear-down logic in a test fixture 
class – you don’t need to repeat it in every test.

• Google Test creates a fresh object for each test – tests 
won’t affect each other!

 class FooTest : public ::testing::Test {
   protected:
    virtual void SetUp() { a = ...; b = ...; }
    virtual void TearDown() { ... }
    ...
 };
 TEST_F(FooTest, Bar) { EXPECT_TRUE(a.Contains(b)); }
 TEST_F(FooTest, Baz) { EXPECT_EQ(a.Baz(), b.Baz()); }
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What to test for: good and bad input

• Good input leads to expected output:
o Ordinary cases

 EXPECT_TRUE(IsSubStringOf("oo", "Google"))
o Edge cases

 EXPECT_TRUE(IsSubStringOf("", ""))
• Bad input leads to:

o Expected error code – easy
o Process crash

 Yes, you should test this!
 Continuing in erroneous state is bad.

 But how?
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Death Tests

• How it works
o The statement runs in a forked sub-process.
o Very fast on Linux
o Caveat: side effects are in the sub-process too!

 TEST(FooDeathTest, SendMessageDiesOnInvalidPort) {
    Foo a;
    a.Init();
    EXPECT_DEATH(a.SendMessage(56, "test"),
                 "Invalid port number");
 }



  

gtest example 
from http://code.google.com/p/googletest/wiki/Primer

For example, let's take a simple integer function:

int Factorial(int n); // Returns the factorial of n

A test case for this function might look like:

// Tests factorial of 0.
TEST(FactorialTest, HandlesZeroInput) {
  EXPECT_EQ(1, Factorial(0));
}

// Tests factorial of positive numbers.
TEST(FactorialTest, HandlesPositiveInput) {
  EXPECT_EQ(1, Factorial(1));
  EXPECT_EQ(2, Factorial(2));
  EXPECT_EQ(6, Factorial(3));
  EXPECT_EQ(40320, Factorial(8));
}

Test Case
Name

Test Names



  

gtest example 
from http://code.google.com/p/googletest/wiki/Primer

ASSERT_EQ(x.size(), y.size()) << "Vectors x and y are of unequal 
length";

for (int i = 0; i < x.size(); ++i) {
  EXPECT_EQ(x[i], y[i]) << "Vectors x and y differ at index " << i;
}

You can easily provide informative messages:
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What not to test

• It’s easy to get over-zealous.
• Do not test:

o A test itself
o Things that cannot possibly break (or that you can do nothing about)

 System calls
 Hardware failures

o Things your code depends on
 Standard libraries, modules written by others, compilers
 They should be tested, but not when testing your module – keep 

tests focused.
o Exhaustively

 Are we getting diminishing returns?
 Tests should be fast to write and run, obviously correct, and easy to 

maintain.
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What makes good tests?

• Good tests should:
o Be independent

 Don’t need to read other tests to know what a test does.
 When a test fails, you can quickly find out the cause.
 Focus on different aspects: one bug • one failure.

o Be repeatable
o Run fast

 Use mocks.
o Localize bugs

 Small tests
• Next, suggestions on writing better tests
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Favor small test functions

• Don’t test too much in a single TEST.
o Easy to localize failure

 In a large TEST, you need to worry about parts affecting 
each other. 

o Focus on one small aspect
o Obviously correct
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Make the messages informative

• Ideally, the test log alone is enough to reveal the cause.
• Bad: “foo.OpenFile(path) failed.”

• Good: “Failed to open file /tmp/abc/xyz.txt.”

• Append more information to assertions using <<.
• Predicate assertions can help, too:

o Instead of: EXPECT_TRUE(IsSubStringOf(needle, hay_stack))

o Write: EXPECT_PRED2(IsSubStringOf, needle, hay_stack)
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EXPECT vs ASSERT

• Two sets of assertions with same interface
o EXPECT (continue-after-failure) vs ASSERT (fail-fast)

• Prefer EXPECT:
o Reveals more failures.
o Allows more to be fixed in a single edit-compile-run cycle.

• Use ASSERT when it doesn’t make sense to continue (seg fault, 
trash results). Example:

 TEST(DataFileTest, HasRightContent) {
    ASSERT_TRUE(fp = fopen(path, "r"))
        << "Failed to open the data file.";

    ASSERT_EQ(10, fread(buffer, 1, 10, fp))
        << "The data file is smaller than expected.";

    EXPECT_STREQ("123456789", buffer)
      << "The data file is corrupted.";
    ...
 }
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Getting back on track

• Your project suffers from the low-test-coverage syndrome. What 
should you do?
o Every change must be accompanied with tests that verify the 

change.
 Not just any tests – must cover the change
 No test, no check-in.
 Test only the delta.
 Resist the temptation for exceptions.

o Over time, bring more code under test.
 When adding to module Foo, might as well add tests for 

other parts of Foo.
o Refactor the code along the way.

• It will not happen over night, but you can do it.



Google Tests

• Key points to take home:
– Keep tests small and obvious.
– Test a module in isolation.
– Break dependencies in production code.
– Test everything that can possibly break, but no 

more
– No test, no check-in



  

Mocking framework

● When an object is unavailable for testing (e.g. it's not 
yours, not written yet) a mock-up can be used

● Also useful if the real object is slowing down your tests 
by (say) carrying out operations you don't need to test 
(e.g. a library)

● It is, of course, possible to roll your own (these are 
usually called "fakes" depending on how you do it)

● A mocking framework allows expected behaviour to be 
defined, and a run-time choice of functions

● Many unit test frameworks provide mocking; Google is 
no exception: http://code.google.com/p/googlemock/



  

Python – PyUnit

● Python has it’s own unit test framework
● Very similar to gtest because, like gtest, it’s 

derived from JUnit

● Usage: import unittest

● Like gtest, it supports test fixtures, test cases, 
etc.

● You should write PyUnit tests just as you write 
gtests



  

Google’s C++ style guide?

● Google is the most comprehensive and detailed

● Is readable (pros and cons to justify decisions)

● Is practical (allows reasonable variations)

● Exceptions: Google state they would probably have 
recommended native exception handling if they 
were starting from scratch!

● Exceptions are obviously a minefield: Test carefully 
to understand exception handling

● We could use cpplint.py, cppclean.py or similar to 
automatically check style



  

Documentation

● Use Google Style Guide on comments
● Remember, others may want to understand, 

reuse or just read your code
● Use dOxygen to produce Javadoc-like HTML 

pages that describe your classes
● Check for broken links!



  

Continuous Integration Stack 

Architectural OO design using Design Patterns

Agreed coding style + unit tests

Commit to DCVS – Bazaar

Build, test, report – 
Jenkins

Redmine
issue tracker

Release

CI Server

You

The world
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