

Continuous Integration

Continuous Integration (CI)

● CI is widely accepted as the best way to create large-
scale software in a collaborative environment

● In its most basic form you use a service which
monitors the version control system, then builds
your code and runs specified tests

● The CI server watches for changes in the source code
repository and builds whenever something changes

● The CI server continuously reports on the build status

Continuous Integration (CI)
● Owning an exercise bicycle doesn’t make you fit (I

wish)

● Likewise having a CI server doesn’t mean we’re
doing CI – CI is a discipline!

● To do CI we have to check-in our code almost as
often as we hit the save button

● You will probably check-in your incremental changes
daily but more frequently is good

● Hence integration goes from being “a big deal” to “a
non-event”

Continuous Integration (CI)

● A failed build is one that doesn’t compile,
lacks a dependency, has a failed unit test

● The CI server can be configured to fail a build
when there are compiler warnings and it is
proposed to do this.

● We can also configure the CI server to run
additional scripts such as test coverage
scripts, style-guide scripts, etc.

CI and unit tests

● The CI server will run your unit tests and
display the messages accordingly

● A failed unit test means it’s found something
that would have bitten either you or
somebody else at some time in the future

● Which is a good thing.
● So we should not be embarrassed about tests

which fail: it’s good to see you use them and
it’s good they’re finding stuff out for you!

Essential rules of CI

● When the build has failed (compiler error,
dependency error, unit test failure) it’s you
who must fix it or you must revert

● No-one should check-in on top of a broken
build – compounds the problem

● You should run all commit tests locally
● Make sure your commit tests all pass before

starting new work
● Revert if necessary to keep the main-line clean

Bazaar

● Starting with MAUS, we are using a distributed
version control system (DVCS) called Bazaar

● Bazaar is written in Python

● With a DVCS you don't need to be on-line to commit
(work on the train, in a cave)

● Theoretically, no need for a backup (ideally everyone
has the master copy)

● You can also run a local copy of the currently
preferred CI server, “Jenkins”, and integrate Bazaar

Jenkins (was Hudson)
● As of MAUS, we are using Jenkins as the CI server.

Chris Tunnell has already set this up here:
http://christesting.streiff.net/

● Jenkins monitors anything checked in using Bazaar

● Jenkins is easy to install: java -jar jenkins.war

● In the “configure” link, you can choose the Bazaar,
TestLink (automates tests, e.g gtests) and many
other plugins

● Thus it’s relatively easy to create you own local
environment to run local commit tests

● We are still trying Jenkins out but it looks good so far

http://christesting.streiff.net/

Google Testing Framework (gtest)

● gtest is based on xUnit, which is a port from
JUnit

● TEST(testCaseName, individualTestName)
● Can group a set of tests by testCase
● Can reuse tests using fixtures
● For more information see:

http://code.google.com/p/googletest/wiki/Documentation

● See also Chris Rogers' examples on G4MICE

SLIDE 7

Google C++ Testing Framework
(aka Google Test)

• What it is
o A library for writing C++ tests
o Open-source with new BSD license
o Based on xUnit architecture
o Supports Linux, Windows, Mac OS, and other OSes
o Can generate JUnit-style XML, parsable by Hudson

[Jenkins]

SLIDE 10

Simple tests

• Simple things are easy:
• TEST() remembers the tests defined, so you don’t have

to enumerate them later.
• A rich set of assertion macros

 // TEST(TestCaseName, TestName)
 TEST(NumberParserTest, CanParseBinaryNumber) {
 // read: a NumberParser can parse a binary number.

 NumberParser p(2); // radix = 2

 // Verifies the result of the function to be tested.
 EXPECT_EQ(0, p.Parse("0"));
 EXPECT_EQ(5, p.Parse("101"));
 }

SLIDE 11

Reusing the same data configuration

• Define the set-up and tear-down logic in a test fixture
class – you don’t need to repeat it in every test.

• Google Test creates a fresh object for each test – tests
won’t affect each other!

 class FooTest : public ::testing::Test {
 protected:
 virtual void SetUp() { a = ...; b = ...; }
 virtual void TearDown() { ... }
 ...
 };
 TEST_F(FooTest, Bar) { EXPECT_TRUE(a.Contains(b)); }
 TEST_F(FooTest, Baz) { EXPECT_EQ(a.Baz(), b.Baz()); }

SLIDE 13

What to test for: good and bad input

• Good input leads to expected output:
o Ordinary cases

 EXPECT_TRUE(IsSubStringOf("oo", "Google"))
o Edge cases

 EXPECT_TRUE(IsSubStringOf("", ""))
• Bad input leads to:

o Expected error code – easy
o Process crash

 Yes, you should test this!
 Continuing in erroneous state is bad.

 But how?

SLIDE 14

Death Tests

• How it works
o The statement runs in a forked sub-process.
o Very fast on Linux
o Caveat: side effects are in the sub-process too!

 TEST(FooDeathTest, SendMessageDiesOnInvalidPort) {
 Foo a;
 a.Init();
 EXPECT_DEATH(a.SendMessage(56, "test"),
 "Invalid port number");
 }

gtest example
from http://code.google.com/p/googletest/wiki/Primer

For example, let's take a simple integer function:

int Factorial(int n); // Returns the factorial of n

A test case for this function might look like:

// Tests factorial of 0.
TEST(FactorialTest, HandlesZeroInput) {
 EXPECT_EQ(1, Factorial(0));
}

// Tests factorial of positive numbers.
TEST(FactorialTest, HandlesPositiveInput) {
 EXPECT_EQ(1, Factorial(1));
 EXPECT_EQ(2, Factorial(2));
 EXPECT_EQ(6, Factorial(3));
 EXPECT_EQ(40320, Factorial(8));
}

Test Case
Name

Test Names

gtest example
from http://code.google.com/p/googletest/wiki/Primer

ASSERT_EQ(x.size(), y.size()) << "Vectors x and y are of unequal
length";

for (int i = 0; i < x.size(); ++i) {
 EXPECT_EQ(x[i], y[i]) << "Vectors x and y differ at index " << i;
}

You can easily provide informative messages:

SLIDE 15

What not to test

• It’s easy to get over-zealous.
• Do not test:

o A test itself
o Things that cannot possibly break (or that you can do nothing about)

 System calls
 Hardware failures

o Things your code depends on
 Standard libraries, modules written by others, compilers
 They should be tested, but not when testing your module – keep

tests focused.
o Exhaustively

 Are we getting diminishing returns?
 Tests should be fast to write and run, obviously correct, and easy to

maintain.

SLIDE 19

What makes good tests?

• Good tests should:
o Be independent

 Don’t need to read other tests to know what a test does.
 When a test fails, you can quickly find out the cause.
 Focus on different aspects: one bug • one failure.

o Be repeatable
o Run fast

 Use mocks.
o Localize bugs

 Small tests
• Next, suggestions on writing better tests

SLIDE 20

Favor small test functions

• Don’t test too much in a single TEST.
o Easy to localize failure

 In a large TEST, you need to worry about parts affecting
each other.

o Focus on one small aspect
o Obviously correct

SLIDE 21

Make the messages informative

• Ideally, the test log alone is enough to reveal the cause.
• Bad: “foo.OpenFile(path) failed.”

• Good: “Failed to open file /tmp/abc/xyz.txt.”

• Append more information to assertions using <<.
• Predicate assertions can help, too:

o Instead of: EXPECT_TRUE(IsSubStringOf(needle, hay_stack))

o Write: EXPECT_PRED2(IsSubStringOf, needle, hay_stack)

SLIDE 22

EXPECT vs ASSERT

• Two sets of assertions with same interface
o EXPECT (continue-after-failure) vs ASSERT (fail-fast)

• Prefer EXPECT:
o Reveals more failures.
o Allows more to be fixed in a single edit-compile-run cycle.

• Use ASSERT when it doesn’t make sense to continue (seg fault,
trash results). Example:

 TEST(DataFileTest, HasRightContent) {
 ASSERT_TRUE(fp = fopen(path, "r"))
 << "Failed to open the data file.";

 ASSERT_EQ(10, fread(buffer, 1, 10, fp))
 << "The data file is smaller than expected.";

 EXPECT_STREQ("123456789", buffer)
 << "The data file is corrupted.";
 ...
 }

SLIDE 23

Getting back on track

• Your project suffers from the low-test-coverage syndrome. What
should you do?
o Every change must be accompanied with tests that verify the

change.
 Not just any tests – must cover the change
 No test, no check-in.
 Test only the delta.
 Resist the temptation for exceptions.

o Over time, bring more code under test.
 When adding to module Foo, might as well add tests for

other parts of Foo.
o Refactor the code along the way.

• It will not happen over night, but you can do it.

Google Tests

• Key points to take home:
– Keep tests small and obvious.
– Test a module in isolation.
– Break dependencies in production code.
– Test everything that can possibly break, but no

more
– No test, no check-in

Mocking framework

● When an object is unavailable for testing (e.g. it's not
yours, not written yet) a mock-up can be used

● Also useful if the real object is slowing down your tests
by (say) carrying out operations you don't need to test
(e.g. a library)

● It is, of course, possible to roll your own (these are
usually called "fakes" depending on how you do it)

● A mocking framework allows expected behaviour to be
defined, and a run-time choice of functions

● Many unit test frameworks provide mocking; Google is
no exception: http://code.google.com/p/googlemock/

Python – PyUnit

● Python has it’s own unit test framework
● Very similar to gtest because, like gtest, it’s

derived from JUnit

● Usage: import unittest

● Like gtest, it supports test fixtures, test cases,
etc.

● You should write PyUnit tests just as you write
gtests

Google’s C++ style guide?

● Google is the most comprehensive and detailed

● Is readable (pros and cons to justify decisions)

● Is practical (allows reasonable variations)

● Exceptions: Google state they would probably have
recommended native exception handling if they
were starting from scratch!

● Exceptions are obviously a minefield: Test carefully
to understand exception handling

● We could use cpplint.py, cppclean.py or similar to
automatically check style

Documentation

● Use Google Style Guide on comments
● Remember, others may want to understand,

reuse or just read your code
● Use dOxygen to produce Javadoc-like HTML

pages that describe your classes
● Check for broken links!

Continuous Integration Stack

Architectural OO design using Design Patterns

Agreed coding style + unit tests

Commit to DCVS – Bazaar

Build, test, report –
Jenkins

Redmine
issue tracker

Release

CI Server

You

The world

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

