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Ay MICE Magnetic Shielding Walls
Reason for their Existence

- The MICE Magnetic Shielding walls were designed to limit the field at the periphery of
the MICE Hall (with the exception of the roof) to 5 Gauss (0.5mT)

- This is a self-imposed limit by RAL & CERN by “Best Practise”, due to the possibility
that members of the public with Pace-Makers might be present in the ISIS & MICE
Control Rooms

-NB: This is not a limit imposed by legislation

-ISIS have also imposed a notional limit of 5 Gauss at the wall of the Injector Hall, to
avoid fringe field effects on the ISIS LINAC

-NB: This limit has never been formally justified by ISIS
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. Phase VI, Solenoid mode, 240MeV/c
VF Opera Magnetic Shielding Wall Model
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Ay Phase VI, Solenoid mode, 240MeV/c
Problem with conductor definition file

- Additional analysis performed to check the effect of the magnetic shielding wall on
beam optics, and subsequently published as a MICE Note, predicted that the peak fields
experienced external to the MICE Hall and at the ISIS Control Room wall would be 19.0 &
17.5 Gauss resp.

*This was significantly higher than the design aim of 5 Gauss maximum for each of
these areas, but not noticed at the time.

*The difference was eventually traced to an error that crept into the conductor
definition file for Solenoid mode, which had been altered back in August 2007 to
reflect the change from 200 to 240Mev/c, plus conductor geometry changes.

All Solenoid mode models since August 2007 were thus in error

*Representative models were subsequently rerun with corrected data, to compare
results, and thus understand the effect of the error on the predicted performance of
the magnetic shielding wall

sInitial conclusions were that the error was only significant for Step VI in Solenoid
mode

Subsequently, another error was discovered in the data used for Step V, which
strongly affects the field produced by the single Coupling Coil in this mode. It is
thus important to re-analyse the results for Step V in Solenoid & Flip modes

-NB: The field of the Coupling Coil in the centre is not cancelled in Step V Flip,
unlike other modes
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Phase VI, Solenoid mode, 240MeV/c
All shields on
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Ay Phase VI, Solenoid mode, 240MeV/c
All shields on
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Phase VI, Solenoid mode, 240MeV/c

All shields on
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Phase VI, Solenoid mode, 240MeV/c
All shields on
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Phase VI, Solenoid mode, 240MeV/c

Wall shields off
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Ay Phase VI, Solenoid mode, 240MeV/c
Wall shields off
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Wall shields off
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Phase VI, Solenoid mode, 240MeV/c
Wall shields off
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Phase VI, Solenoid mode, 240MeV/c
Wall shields off
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% Options to fix the problem

-Increase the shielding thickness?

«2x35mm -> 19.8/18.2 G

2X40mm > 17.2/15.8 G

2X45mm > 14.6/13.5 G

2X50mm > 12.2/11.3 G

*Thus increasing the thickness of the existing sheets in not enough !
-Add extra iron sheets to ISIS Control Room wall?

Smm ->21.3/18.4 G

*10mm -> 21.6/18.4 G

*15mm ->21.6/18.4G

20mm > 21.7/18.4 G

*Thus adding iron sheets to the ISIS Control Room wall does not help at all !
-Increase the length of the shielding walls?

- This had no significant improvement, and is quite impractical anyway
-The presence of additional iron sheet on the floor does help

*40mm thick iron sheet as the false floor gives 16.88/15.13 G

*This is clearly an improvement, and more runs should be performed with various sizes
and positions of iron sheet on the floor

-However, floor plates must be applied uniformly, to avoid the creation of
asymmetric fields which would upset the beam optics.
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Phase VI, Solenoid mode, 240MeV/c
Effect of adding extra iron floor plate
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Consult with Vector Fields
as a matter of urgency
for expert advice on increasing the
affectivity of the shielding walls
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L Interim Report from Vector Fields

- Accuracy of the Existing Model

-The Opera software uses methods that allow the fields from coils and iron to be
separately calculated (reduced potentials)

-The coil fields are calculated to very high accuracy by integration
-The iron fields are calculated using a finite element method

-However in regions where the coil and iron fields cancel, this approach tends to
amplify the errors in the total field.

-This can be avoided by specifying whether a total field FE solution is required
in particular regions of space.

- The magnetic shielding in the models reduced the field in the ISIS & MICE Control
Rooms from 16 mT to 1.8mT, implying 90% cancellation of the coils’ fields

-It is thus appropriate to use total field solutions in shielded areas.

-Opera reported an expected error of 1% in its FE solution; the cancellation
would increase the error in the total field to approximately 10%.

-The models were thus modified to use the total field solutions in all regions
exterior to the cylinder containing the superconducting coils.

»The calculated fields in the control room changed by approximately 8%,
in good agreement with the program’s expected error.
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Interim Report from Vector Fields

*The accuracy of Opera’s finite element solution is related to the element size and the

solution exhibits quadratic convergence as the finite element’s linear dimensions are
reduced.

*The element size was therefore reduced in the MICE model, to establish
confidence in the programs expected error calculation.

*The results obtained using Opera agreed with the programs error predictions
and behaved consistently when the models were refined.

*The program predicts maximum fields of 1.7mT in the ISIS and 1.5mT in the
MICE control rooms with the existing shielding configuration, when the
shields are manufactured from annealed UST1010 steel.
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Interim Report from Vector Fields

Steel characteristics

Annealed US1010 steel has been frequently used to manufacture magnetic
shielding for high field NMR magnets.

The magnetic characteristics of the steel have been measured for many samples
and the performance of the shields has been reliable.
The magnetic performance of US1010 that has not been annealed is very variable.
« The initial model for the MICE shielding has been recalculated using average
properties for un-annealed US1010 steel and the fields in the ISIS and MICE
control rooms increased to 2.5mT.

Annealed US1010 properties are used for all results in the interim report, except
where other steels are used to look at sensitivity.
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Interim Report from Vector Fields

Options for Improving MICE magnetic Shielding

« The initial configuration of shields shows some saturation of the steel in the Control
room shielding walls and floor plate.

« A calculation using a fixed high permeability for the steel provides an easy way
to check the maximum efficiency of a shielding configuration.

« This calculation showed that if the shielding walls were increased in thickness
so that the flux density in the steel was below 1T, the maximum field in the ISIS
control room would be 0.47mT and in the MICE control room 0.46T.

« The constant permeability result also gives an immediate indication of the
positions where increased shield thickness is required.

« NB: Increasing the shielding plate thickness is an option, but the safety margin is
small.
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Interim Report from Vector Fields

* Increased shielding plate thickness

(Model ref M1). The thickness of the floor plate on the control room side was
increased by 35mm from Z=-3M to +3M (measured from the centre of MICE along
the beam line direction) and the thickness of the outer control room wall plates was
increased by 25mm from Z=-3M to +2.366M.

e The maximum field in the ISIS control room = 0.94mT
« The maximum field in the MICE control room = 0.91mT

The thickness of the outer control room wall plates was increased by a further
25mm from Z=-3M to +2.366M (ie. total increase is 50mm)

« The maximum field in the ISIS control room = 0.8mT

« The maximum field in the MICE control room = 0.76mT
These results indicate the scale of the increases in thickness needed to improve the
shielding performance.
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Interim Report from Vector Fields

Modified Geometry

(Model ref M2). The geometry of the shields can be changed so that less field
escapes from the MICE hall. Three copies of the existing fridge shield upstream
plate were added to model reference M1 to give the system shown

Unfortunately this change increased the field in the MICE control room by
0.1mT. The plates collect more field from the coils, but this increases the flux
density in the control room wall plates.
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Interim Report from Vector Fields

Other options to be considered

« Smaller shielding wall plates could be placed symmetrically, closer to the MICE
magnets
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Interim Report from Vector Fields

Other options to be considered

A ‘ceiling’ plate could be added on the control room side (for example a plate of the

same dimensions and position as the existing floor plate, but at a height 5M above
the floor plate

- This option is not practical, due to interference with the gantry crane, and
components on the mezzanine.

4fFebf2011 15:57:33
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What Next?

Obtain final report from Vector Fields
« This is proving to be far too time-consuming than was originally implied by VF

Check the affectivity of the magnetic shielding for Step V for both Solenoid and Flip
modes

Make hard decisions regarding a solution to the shielding issue
Analyse effect of final magnetic shielding walls on beam optics

Produce field maps to assist with the placement and potential shielding of Cooling
Channel ancillary plant (eg pumps, cryo-cooler compressors, equipment racks, control
valves and relays, etc.)
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