

Cooling Channel Magnet Mapping Plan

Pierrick Hanlet

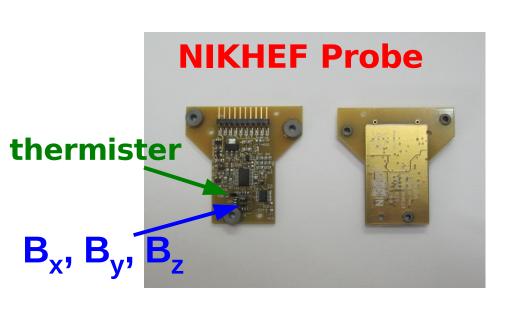
16 February 2011

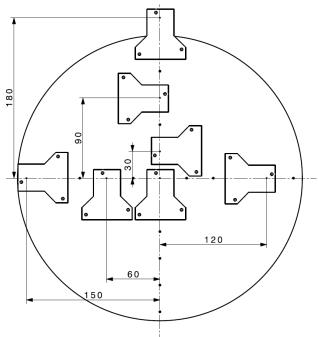
Outline

Introduction

Motivation

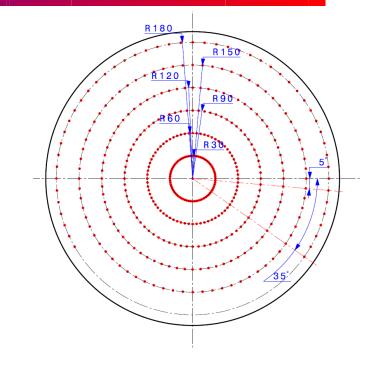
Tasks

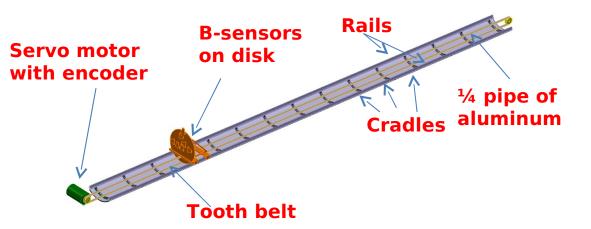

- Configurations
- Mapping Grids



Introduction

- "Mapping" magnets: measuring magnetic field components on a 3D spatial grid
- Performed using Hall probes: B_x, B_y, B_z, T
- NIKHEF probes mounted on disk





Introduction

- Disk rotated
- measures B at 7 radii
- maps transverse plane
- 5° yields 1.5cm @ largest radius

- disk moved
- longitudinally
- •3cm steps

Purpose

Guiding Principle:

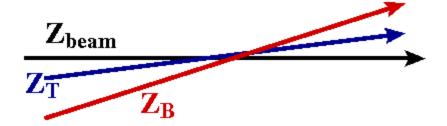
Errors in field map <u>must not</u> contribute significantly to emittance measurement errors.

- Transverse momentum measured from radius of curvature (tracker) and magnetic field
- Position and p_t used to compute emittance
- Measured field map will be converted to G4MICE field map for analysis

Purpose

Characterization of magnets Two Sets of Measurements

- •At vendors:
 - **▲Determine magnets operate according to specifications**
- In situ in MICE hall
 - **▲real configurations & real environment**
 - **▲check field alignment**
 - Acheck field uniformity
 - Acheck field consistent with Maxwell
 - **▲fringe fields**



Purpose

Additional reasons:

- Determine if simulation matches data
- Fringe fields
 - Force models
 - Nearby equipment (pumps, electronics, ...)
 - Global tracking
- Relative and global alignment

Scale with fixed hall probes

Tasks - before mapping

Software readiness:

- Convert map to G4MICE map
- Tests for map:
 - Superposition
 - Relative alignment of magnetic and geometric axes
 - Field uniformity
 - Field consistency with Maxwell's equations
 - ◆ Emittance errors introduced

Tasks - before mapping

What do we need to know?

- How do we quantify field error contributions to emittance?
 - Uniformity, positions, magnitudes
- What can we do analytically?
- What simulations do we need?
- How to convert map to G4MICE map?
 - Introduce conversion errors?
 - What grid step size?
- What configurations do we map?

Tasks – at vendors

At vendors (coarse grid):

- Measure each coil separately
- Measure at 0.25, 0.5, 1.0, 1.1 xI_{max}
- Measure 5 coils (at 0.25, 0.5, 1.0, 1.1 xI_{max})
 - Convert map to G4MICE
 - · Checks:
 - Superposition
 - Alignment of magnetic and geometric axes
 - Field uniformity
 - Verify Maxwell's equations

Tasks - in MICE hall

In MICE hall (fine grid):

- Magnets in situ real environment and realistic running configurations
- Fringe fields
- Fixed hall probes
- Convert map to G4MICE
- Checks:
 - Superposition
 - Relative alignment: geometric & magnetic
 - Verify Maxwell's equations
- Use to compute errors from real map

Configurations

- Spectrometer solenoids
 - 9 measurements X 4 FC configurations=36
 - Needs further study/input
- Focusing coils
 - ++
 - --
 - +-
 - -+ (will we need this also?)
- Coupling coils (1 ?)

At vendor (coarse grid):

- 10cm longitudinal steps
- 20° angular steps
- 5 coils at 4 currents + all coils
 - 24 configurations

- 4 measurements (B_x,B_y,B_z,T) 4/15s
- Longitudinal travel v=10mm/s
- Will use $\Delta t = \Delta z/v + 0.5s$ (Δz is step size)

SS at vendor (coarse grid: $\Delta z=10cm$):

- Movement and measurement is 10.5s
 - SS 5m longitudinal
 - **▲50 longitudinal steps 525s (in z)**
 - **▲18 angular steps 525sX18=9,450s**
 - **▲3** hours/configuration 3/day
 - **▲24 configurations 8 days**

CC/FC at vendor (coarse grid: ∆z=10cm): Movement and measurement is 10.5s

- FC 3.5m longitudinal
 - **▲35 longitudinal steps 368s (in z)**
 - **▲18 angular steps 368sX18=6,624s**
 - **▲2** hours/configuration 4/day
 - **▲10** configurations 2.5 days
- CC 3.5m longitudinal, 1 configuration
 ▲4 configurations 1 day

At MICE (fine grid):

- 3cm longitudinal steps
- 10° angular steps
- 9 (ε,p) measurements
- 4 FC configurations
- 4 measurements (B_x,B_y,B_z,T) 4/15s
- Longitudinal travel 10mm/s

SS in MICE hall (fine grid: $\Delta z=3cm$):

- Movement and measurement is 3.5s
 - SS 5m longitudinal
 - **▲167 longitudinal steps 585s (in z)**
 - **▲36 angular steps 585sX36=21,060s**
 - **▲6** hours/configuration 2/day
 - **▲36 configurations 18 days**

CC/FC in MICE hall (fine grid: ∆z=3cm): Movement and measurement is 3.5s

- FC 3.5m longitudinal
 - **▲117 longitudinal steps 410s (in z)**
 - **▲36 angular steps 410sX36=14,760s**
 - **▲4.1** hours/configuration 2/day
 - **▲4 configurations 2 days**
- CC 3.5m longitudinal, 1 configuration
 - ▲ 1 configurations 1 day
 Pierrick M. Hanlet 16 Februrary 2011

Tentative Schedule

In all that follows, I propose 2 sets of rails:

- 1 at RAL and 1 to move between vendors
- Beginning August SS1 at Wang NMR
- End August at FC1 at Tesla
- Beginning September SS1 at MICE
- Beginning November SS2 at Wang NMR
- Beginning January SS2 at MICE

Very preliminary – need lots of input Note manpower intensive!!!

Conclusions

- Mapping is necessary
- Required tasks identified (preliminary)
- Significant preliminary work
- Measurements differ: (vendor & MICE)
- Configurations identified (CC and FC)
- SS missing configurations(investigating)

Conclusions

- Initial grids proposed must be optimized
- Manpower intensive needs thought
- Optimization and MICE note to follow