Cooling Channel Magnet Mapping Plan

Pierrick Hanlet

OF TECHNOLOGY
16 February 2011

- Introduction

- Motivation
- Tasks
- Configurations
- Mapping Grids

Pierrick M. Hanlet - 16 Februrary 2011

Introduction

- "Mapping" magnets: measuring magnetic field components on a 3D spatial grid Performed using Hall probes: B_{x}, B_{y}, B_{z}, T - NIKHEF probes mounted on disk

Introduction

- Disk rotated
- measures B at 7 radii - maps transverse plane - 5° yields 1.5 cm @ largest radius

Servo motor with encoder

B-sensors on disk

Tooth belt

•disk moved
\cdot-longitudinally
$\cdot 3 \mathrm{~cm}$ steps

Pierrick M. Hanlet - 16 Februrary 2011

Guiding Principle:

Errors in field map must not contribute significantly to emittance measurement errors.

- Transverse momentum measured from radius of curvature (tracker) and magnetic field
- Position and p_{t} used to compute emittance
- Measured field map will be converted to G4MICE field map for analysis

Characterization of magnets Two Sets of Measurements
-At vendors:
Δ Determine magnets operate according to specifications
-In situ in MICE hall
sreal configurations \& real environment Δ check field alignment Δ check field uniformity scheck field consistent with Maxwell Δ fringe fields

Purpose

Additional reasons:

- Determine if simulation matches data
- Fringe fields
- Force models
- Nearby equipment (pumps, electronics, ...)
- Global tracking
- Relative and global alignment

- Scale with fixed hall probes

Pierrick M. Hanlet - 16 Februrary 2011

Tasks - before mapping

Software readiness:

- Convert map to G4MICE map
- Tests for map:
- Superposition
- Relative alignment of magnetic and geometric axes
- Field uniformity
-Field consistency with Maxwell's equations
- Emittance errors introduced

Tasks - before mapping

What do we need to know?

- How do we quantify field error contributions to emittance?
- Uniformity, positions, magnitudes
- What can we do analytically?
- What simulations do we need?
- How to convert map to G4MICE map?
- Introduce conversion errors?
- What grid step size?
- What configurations do we map?

Pierrick M. Hanlet - 16 Februrary 2011

Tasks - at vendors

At vendors (coarse grid): -Measure each coil separately
-Measure at $0.25,0.5,1.0,1.1 \times I_{\max }$
-Measure 5 coils (at $0.25,0.5,1.0,1.1$ xI $_{\text {max }}$)

- Convert map to G4MICE
- Checks:
- Superposition
- Alignment of magnetic and geometric axes
- Field uniformity
- Verify Maxwell's equations

Pierrick M. Hanlet - 16 Februrary 2011

Tasks - in MICE hall

In MICE hall (fine grid):

- Magnets in situ - real environment and realistic running configurations
- Fringe fields
- Fixed hall probes
- Convert map to G4MICE
- Checks:
- Superposition
- Relative alignment: geometric \& magnetic
- Verify Maxwell's equations
- Use to compute errors from reall map
- Spectrometer solenoids
- 9 measurements X 4 FC configurations=36
- Needs further study/input
- Focusing coils
- + +
- --
- +-
- -+ (will we need this also?)
-Coupling coils (1 ?)
Pierrick M. Hanlet - 16 Februrary 2011

Mapping Grids

At vendor (coarse grid):

- 10 cm longitudinal steps
- 20º angular steps
- 5 coils at 4 currents + all coils - 24 configurations
- 4 measurements (B_{x}, B_{y}, B_{z}, T) 4/15s
- Longitudinal travel $v=10 \mathrm{~mm} / \mathrm{s}$
- Will use $\Delta t=\Delta z / v+0.5 s$ (Δz is step size)

Pierrick M. Hanlet - 16 Februrary 2011

Mapping Grids

SS at vendor (coarse grid: $\Delta z=10 \mathrm{~cm}$):

- Movement and measurement is $\mathbf{1 0 . 5 s}$
- SS - 5m longitudinal
$\triangle 50$ longitudinal steps - 525s (in z)
418 angular steps - 525sX18=9,450s
43 hours/configuration - 3/day
- 24 configurations - 8 days

CC/FC at vendor (coarse grid: $\Delta z=10 \mathrm{~cm}$): Movement and measurement is $\mathbf{1 0 . 5 s}$

- FC - 3.5m longitudinal
$\triangle 35$ longitudinal steps - 368s (in z)
$\triangle 18$ angular steps - 368sX18=6,624s
$\Delta 2$ hours/configuration-4/day
$\triangle 10$ configurations - $\mathbf{2 . 5}$ days
- CC - 3.5m longitudinal, 1 configuration
$\Delta 4$ configurations - 1 day

Mapping Grids

At MICE (fine grid):

- 3cm longitudinal steps
- $\mathbf{1 0}^{\circ}$ angular steps
- 9 (ε, p) measurements
- 4 FC configurations
- 4 measurements (B_{x}, B_{y}, B_{z}, T) 4/15s
-Longitudinal travel $10 \mathrm{~mm} / \mathrm{s}$

Mapping Grids

SS in MICE hall (fine grid: $\Delta z=3 \mathrm{~cm}$):

- Movement and measurement is $\mathbf{3 . 5 s}$
- SS - 5m longitudinal

4167 longitudinal steps - 585s (in z)
$\triangle 36$ angular steps - 585sX36=21,060s
$\Delta 6$ hours/configuration - 2/day
$\Delta 36$ configurations - 18 days

Mapping Grids

CC/FC in MICE hall (fine grid: $\Delta z=3 \mathrm{~cm}$): Movement and measurement is 3.5 s

- FC - 3.5m longitudinal
$\Delta 117$ longitudinal steps - 410s (in z)
$\triangle 36$ angular steps -410sX36=14,760s
44.1 hours/configuration-2/day
$\Delta 4$ configurations - 2 days
- CC - 3.5m longitudinal, 1 configuration
$\Delta 1$ configurations - 1 day

Tentative Schedule

In all that follows, I propose 2 sets of rails:

- 1 at RAL and 1 to move between vendors
- Beginning August SS1 at Wang NMR
- End August at FC1 at Tesla
- Beginning September SS1 at MICE
- Beginning November SS2 at Wang NMR
- Beginning January SS2 at MICE

Very preliminary - need lots of input Note manpower intensive!!!

- Mapping is necessary
- Required tasks identified (preliminary)
- Significant preliminary work
- Measurements differ: (vendor \& MICE)
- Configurations identified (CC and FC)
- SS missing configurations(investigating)
- Initial grids proposed - must be optimized
- Manpower intensive - needs thought
- Optimization and MICE note to follow

