Simulation of nuclear muon capture by CHIPS in Geant4

Mikhail Kosov, Physics Validation, 28.02.2007

Neutron spectra in μ⁻-capture reactions

- Since 60's there exists a problem of high energy neutrons in muon capture reactions
- Maximum neutron energy in the μ -(p,n) ν_{μ} reaction is T= $m_{\mu}^2/2m_N$ =5.3 MeV (E_n >80 MeV)
- Absolute normalization of nuclear μ-capture reaction depends on a nuclear capture rate Λ_c =1/ τ_c (.45÷12610.) and on a decay rate Λ_d .
- As muons are bounded, the decay rate $\Lambda_{\rm d}$ is reduced by a Huff factor (H): $\Lambda_{\rm d}$ =H/ $\tau_{\rm u}$ =H·455.16
- For light nuclei: Λ_c << Λ_d , heavy nuclei: Λ_c >> Λ_d

Parameterization of atomic coefficients

- The Huff factor (I.W. Huff, Ann.Phys. (N.Y.) 16 (1961) 288) was investigated in I.M. Blair et al., Proc.Phys.Soc. London 80 (1962) 938: H=1÷0.82(U)
- In CHIPS it is tabulated till ¹⁹F and for Z>9 it is parameterized as a function of Z (only)
- The nuclear capture rate Λ_c can be roughly approximated by a **Primakoff** formula $\Lambda_c(A,Z)=Z^4_{eff}\cdot(170s^{-1})\cdot[1-3.125\cdot(A-Z)/2A]$
- In CHIPS it is tabulated till ¹⁹F and for Z>9 it is parameterized as a function of Z (only)

Simulation of decay of bounded muon

The effective nuclear charge Z_{eff} and the nuclear mass A can be used for simulation of the bounded muon decay:

Recently electron spectra

Were accurately calculated in

Atomic Data and Nuclear Data Tables, v.54(1993)165

The electron spectrum can exceed the free $m_{\mu}/2$ threshold, because momentum can be transferred to the recoil nucleus.

Geant4 processes for muon capture

- Historically there was an inherited from GEANT3 G4MuonMinusCaptureAtRest process. It was rewritten by FLUKA demand.
- Now the algorithm of this process is a precompound deexcitation after μ⁻(p_{bound}, n_{free})ν_μ.
- An alternative process is G4QCaptureAtRest
- It is based on the CHIPS deexcitation after $97.5\% \ \mu^{-}(q,q)v_{\mu}$ and $2.5\% \ \mu^{-} \rightarrow q + \bar{q} + v_{\mu}$.
- On pictures: old blue curves, new (CHIPS)
 red curves, dots are from published Tables.

2007/02/21 11.51

February 28, 2007

M.Kosov. Muon Capture

2007/02/21 18.42

February 28, 2007

M.Kosov. Muon Capture

Spectra of nucleons in nuclear µ-capture

- In addition to classic E. Segre data for Ca (▲) (Experimental Nuclear Physics, N.-Y., Wiley,1953) and R.M. Sudelin, R.M. Edelstein measurements (Phys.Rev. C7 (1973) 1037) on Si, S, and Ca nuclei (*) there are recent data for neutron spectra:
 - □ for ¹⁶O (Nucl.Phys. A408 (1983) 573) ¹⁶O(μ -, ν_{μ} xn)
 - □ for ¹⁶⁵Ho (Phys. Lett., B137 (1984) 339) (■)
 - □ for O, Si, Ca, Pb (Nucl. Phys. A436 (1985) 717) (●)
 - □ for ⁴⁰Ca (Phys. Lett., B177 (1986) 21) (■)
- The only μ-nuclear (Ca, Y) spectra of protons are W.J.Cumming, Nuclear Muon Capture in Extreme Kinematics, Stanford University, Thesis (Ph.D), 1992 (o)

2007/02/20 20.51

February 28, 2007

M.Kosov. Muon Capture

2007/02/22 21.37

February 28, 2007

M.Kosov. Muon Capture

2007/02/23 13.38

February 28, 2007

M.Kosov. Muon Capture

2007/02/22 16.45

February 28, 2007

2007/02/23 19.03

February 28, 2007

M.Kosov. Muon Capture

2007/02/28 13.27

February 28, 2007

M.Kosov. Muon Capture

2007/02/28 16.25

February 28, 2007

M.Kosov. Muon Capture

2007/02/28 18.29

February 28, 2007

Conclusion

- A bug was found in electron spectra simulation by the G4MuonMinusCaptureAtRest class: electron is radiated in muon momentum direction
- The μ⁻(p_{bound}, n_{free})ν_μ capture is unrealistic and can be substituted by the **PCAC** mechanism: J.Bernabeu, T.E.O. Ericson, C.Jarlskog, Phys. Lett., 69B (1977) 161
- Precompound model can not reproduce the difference between proton and neutron spectra
- The CHIPS 2.5% parameter (for $\mu^- \rightarrow q + \bar{q} + \nu_{\mu}$) chosen for Ca can be A-dependent and nuclear parameters can be different from those for pion capture (in this calculations they are the same)