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Outline comereey e 3
Lecture 1: Building a probability model
» preliminaries, the marked Poisson process
» Incorporating systematics via nuisance parameters
» constraint terms
» examples of different “narratives” / search strategies
Lecture 2: Hypothesis testing
» simple models, Neyman-Pearson lemma, and likelihood ratio
» composite models and the profile likelihood ratio
» review of ingredients for a hypothesis test

Lecture 3: Limits & Confidence Intervals
» the meaning of confidence intervals as inverted hypothesis tests
» asymptotic properties of likelihood ratios
» Bayesian approach
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The Test Statistic and its distribution ggzgme;Hf;-gcs(‘T’

Consider this schematic diagram

signal + background background-only

Probability Density
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Test Statistic

signal like background like

The “test statistic” is a single number that quantifies the entire experiment, it
could just be number of events observed, but often its more sophisticated, like
a likelihood ratio. What test statistic do we choose?

And how do we build the distribution? Usually “toy Monte Carlo”, but what
about the uncertainties... what do we do with the nuisance parameters?
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An example '::zr:::r.:;;':?f%

Essentially, you need to fit your model to the data twice:

once with everything floating, and once with signal fixed to 0
P(maa|:u — Oaﬁ(:u — O;maa))
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Properties of the Profile Likelihood Ratio o, @
After a close look at the profile likelihood ratio

Mu) =
= Plm,ali,0)
one can see the function is independent of true values of v
» though its distribution might depend indirectly

Wilks’s theorem states that under certain conditions the

distribution of -2 In A (u=uo) given that the true value of u is uo
converges to a chi-square distribution

A

P(m,a|u, v(y; m, a))

» more on this tomorrow, but the important points are:

» “asymptotic distribution” is known and it is independent of v !
- more complicated if parameters have boundaries (eg. = 0)

Thus, we can calculate the p-value for the background-only
hypothesis without having to generate Toy Monte Carlo!
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Toy Monte Carlo ::z:,zl;f.::;;f‘{’
Explicitly build distribution by generating “toys” / pseudo experiments assuming a
specific value of x and v.

» randomize both main measurement m and auxiliary measurements a

» fit the model twice for the numerator and denominator of profile likelihood ratio

» evaluate -2In A(u) and add to histogram
Choice of u is straight forward: typically x=0 and x=1, but choice of vis less clear

» more on this tomorrow

This can be very time consuming. Plots below use millions of toy pseudo-
experiments on a model with ~50 parameters.
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What makes a statistical method e e

To describe a statistical method, you should clearly specify
> choice of a test statistic

- simple likelihood ratio (LEP) Qrep = Lsys(pn=1)/Ly(p = 0)
. ratio of profiled likelihoods (Tevatron) Qrev = Lsts(n=1,0)/Ly(n=0,0")
- profile likelihood ratio (LHC) Ap) = Loss (1, 0)/Lgi(f1, D)

> how you build the distribution of the test statistic
- toy MC randomizing nuisance parameters according to 7 (v)
- aka Bayes-frequentist hybrid, prior-predictive, Cousins-Highland
- toy MC with nuisance parameters fixed (Neyman Construction)
- assuming asymptotic distribution (Wilks and Wald, more tomorrow)

- what condition you use for limit or discovery
- more on this tomorrow
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Experimentalist Justification g;mf;xgcf‘{
So far this looks a bit like magic. How can you claim that you

incorporated your systematic just by fitting the best value of your
uncertain parameters and making a ratio?

It won't unless the the parametrization is sufficiently flexible.

So check by varying the settings of your simulation, and see if the
profile likelihood ratio is still distributed as a chi-square

g Nominal (Fast Sim) Here it is pretty stable, but
g10°E —— Smeared P Ly -
g F @ scale 1 it’s not perfect (and this is
a2l Q° scale 2 i i
107 O e a log plot, so it hides some
- Q° scale 4 ' ' '
I . T scaled ot pretty big discrepancies)
S = S Leading-order WWbb
10 Full Simulation _ _ _
For the distribution to be
05 L dt=10 fb™ independent of the nuisance
parameters your
100 ‘ Lo parametrization must be

o 2 4 6 8 10 12 14 16 18 20 syfficiently flexible.

log Likelihood Ratio
Kyle Cranmer (NYU) CERN School HEP, Romania, Sept. 2011 104




A very important point o s |

If we keep pushing this point to the extreme, the physics problem
goes beyond what we can handle practically

The p-values are usually predicated on the assumption that the true
distribution is in the family of functions being considered

» €g. we have sufficiently flexible models of signal & background to
incorporate all systematic effects

» but we don’t believe we simulate everything perfectly

» ..and when we parametrize our models usually we have further
approximated our simulation.

+ nature -> simulation -> parametrization

At some point these approaches are limited by honest systematics
uncertainties (not statistical ones). Statistics can only help us so much

after this point. Now we must be physicists!
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Confidence Intervals (Limits)
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Confidence Interval Commocaor ano

PARTICLE PHYSICS

[

What is a “Confidence Interval? | —LEP1 and SLD
80.5 - LEP2 and Tevatron (prel.)

> you see them all the time: 1 68%CL

Want to say there is a 68% chance
that the true value of (mw, mt) is in

this interval < _
- but that's P(theory|data)!

Correct frequentist statement is that 150 175 200

the interval covers the true value m, [GeV]

5 .
68% of the time -Bayesian “credible interval” does

mean probability parameter is
in interval. The procedure is
very intuitive:

) ) /(@) (0)
POeV)= /‘/W(e\x) ) defdgf(x|9)7r(9)

- remember, the contour is a function of
the data, which is random. So it moves
around from experiment to experiment
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Neyman Construction example e |
For each value of gconsider f(x|0)

f(x|0)

A
y
65 _
01 -
0, _
X
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Neyman Construction example (‘T’

Let’s focus on a particular point f(x|0,)
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Neyman Construction example g;iggiemgcf‘{

Let’s focus on a particular point f(z|0,)
» we want a test of size o
» equivalent to a 100(1 — )% confidence interval ong
» so we find an acceptance region with1l — o probability

A

f(x|6o)
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Neyman Construction example S s |

Let’s focus on a particular point f(z|6,)
» No unique choice of an acceptance region
» here’s an example of a lower limit
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Neyman Construction example e

Let’s focus on a particular point f(z|6,)
» No unique choice of an acceptance region
»and an example of a central limit

v’oz/2”
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Neyman Construction example coe e

Let’s focus on a particular point f(z|6,)
» choice of this region is called an ordering rule

» In Feldman-Cousins approach, ordering rule is the
likelihood ratio. Find contour of L.R. that gives size o

A A

f(x|6o)
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Neyman Construction example g;zme;ng%

Now make acceptance region for every value of ¢

f(x|0)
A
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Neyman Construction example e |
This makes a confidence belt for 6

f(x]0)

A
y
92 F\/ >
0. [ > .
0 >
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Neyman Construction example e |
This makes a confidence belt for 6

the regions of data in the confidence belt can be
considered as consistent with that value of 6
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Neyman Construction example e |
Now we make a measurement z

the points ¢ where the belt intersects zo a part of the
confidence interval in 4 for this measurement

€g. [9—7 H-I-]
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Neyman Construction example commeroer e Y
For every point @, if it were true, the data would fall in its
acceptance region with probability 1 — «

If the data fell in that region, the pointgd would be in the

interval [§_, 6. ]

So the interval[f—, 04 ] covers the true value with probability 1 — «

118

Kyle Cranmer (NYU) CERN School HEP, Romania, Sept. 2011




A Point about the Neyman Construction e T

This is not Bayesian... it doesn’t mean the probability
that the true value ofg is in the interval is1 — a!

Ay A
2ra
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Inverting Hypothesis Tests e A |
There is a precise dictionary that explains how to move from from
hypothesis testing to parameter estimation.

» Type | error: probability interval does not cover true value of the
parameters (eq. it is now a function of the parameters)

» Power is probability interval does not cover a false value of the
parameters (eg. it is now a function of the parameters)

- We don’t know the true value, consider each point 6’0 as if it were true

What about null and alternate hypotheses?
» when testing a pointfyit is considered the null
» all other points considered “alternate”
So what about the Neyman-Pearson lemma & Likelihood ratio?
- as mentioned earlier, there are no guarantees like before
>~ @ common generalization that has good power is:
f(z|Hp)
f(x|Hy)
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There is a formal 1-to-1 mapping between hypothesis tests and
confidence intervals:

» some refer to the Neyman Construction as an “inverted
hypothesis test”

Table 20.1 Relationships between hypothesis testing and interval estimation

Property of corresponding

Property of test confidence interval
Size = « Confidence coefficient = 1 — «
Power = probability of rejecting a  Probability of not covering a false
false value ot 8 =1 -8 valueof 0 =1 - 8
Most powerful Uniformly most accurate
Unbiased

— { Urbiased ] .

Equal-tails test o) = a2 = %af Central interval
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Discovery in pictures ::z:;;f;g;ecf‘f
Discovery: test b-only (null: s=0 vs. alt: s>0)
- note, one-sided alternative. larger N is “more discrepant”

obs b-only p-value

b-only stb

~ N I aka “CLb”

o) 4 N,

+ i
7)) / i
zZ / I
— / :
o K4 I
/ I
/ I
/ I
/ 1
/ :
/7 I
s i
/,/ ~~~~~I

Nevents ——— more discrepant ——»
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Sensitivity for discovery in pictures i
When one specifies 50 one specifies a critical value for the data before
“rejecting the null”.
Leaves open a question of sensitivity, which is quantified as “power” of the test
against a specific alternative

> In Frequentist setup, one chooses a “test statistic” to maximize power

- Neyman-Pearson lemma: likelihood ratio most powerful test for one-sided alternative

Power of test against s

Critical region defined by 50

So+b

P(N | s+b)

N events
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Measurements in pictures LN |
Measurement typically denoted o0 = Xt Y.
» X is usually the “best fit” or maximum likelihood estimate
» £Y usually means [X-Y, X+Y] is a 68% confidence interval
Intervals are formally “inverted hypothesis tests”: (null: s=so vs. alt: s# so)
> One hypothesis test for each value of so against a two-sided alternative

> No “uniformly most powerful test” for a two-sided alternative

obs, (Sbest+b)

2.5%

P(N | s+b)
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Upper limits in pictures g;imegxgcf‘{
What do you think is meant by “95% upper limit” ?

Is it like the picture below?
» ie. increase s, until the probability to have data “more discrepant” is < 5%

obs ]
b-only j ok SosF excluded
7~ I3 ” -, I ““ll'll.l.," ““‘ull.,,""'
He) aka CLs+b //’ \*\
+ / RN
v 5% : 3
_ x
B
z I
o |
I
I
I
I
I
I
I

O
R
™~

)
L)

-+
O
\~~
~~~~
~~--___

<— more discrepant—— N events
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Upper limits in pictures g:zr;:ff;;':’cs(‘%
Upper-limits are trying to exclude large signal rates.

» form a 95% “confidence interval” on s of form [0,Sos]
Intervals are formally “inverted hypothesis tests”: (null: s=so vs. alt: s<so)

> One hypothesis test for each value of sp against a one-sided alternative
Power of test depends on specific values of null sp and alternate s’

- but “uniformly most powerful” since it is a one-sided alternative

ok Sg5+Db excluded

5%

P(N | s+b)

[T
—
I iy

<— more discrepant—— N events
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The sensitivity problem (‘Tﬁ
The physicist’'s worry about limits in general is that if there is a strong
downward fluctuation, one might exclude arbitrarily small values of s

» with a procedure that produces proper frequentist 95% confidence
intervals, one should expect to exclude the true value of s 5% of the time,
no matter how small s is!

» This is not a problem with the procedure, but an undesirable consequence of the Type | / Type
|l error-rate setup

P(N | s+b)

e

~-
_——
I ———

N events
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Power in the context of limits ::f,:,;;f;“:';ecf%’
Remember, when creating confidence intervals the null is s=sg
» and power is defined under a specific alternative (eg. s=0)

Power of test against s=0

b-only Sgs+b

P(N | s+b)

4

-
~—
—
----~__

N events
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CLs e T
To address the sensitivity problem, CLs was introduced
» common (misused) nomenclature: CLs = CLs+/CLyp
» idea: only exclude if CLs<5% (if CLp is small, CLs gets bigger)
CLs is known to be “conservative” (over-cover): expected limit covers with 97.5%
- Note: CLs is NOT a probability

“The CLs ... methods combine size and power in a very ad hoc way and are

L unlikely to have satisfactory statistical properties.” -- D. Cox & N. Reid
b

P(N | s+b)

*

[T
—
I iy

N events

Kyle Cranmer (NYU) CERN School HEP, Romania, Sept. 2011 129




CENTER FOR

The Power Constraint gzimxgcf‘{

An alternative to CLs that protects against setting limits when one has no
sensitivity is to explicitly define the sensitivity of the experiment in terms of power.

» A clean separation of size and power. (a new, arbitrary threshold for sensitivity)

» Feldman-Cousins foreshadowed the recommendation sensitivity defined as
50% power against b-only

» David van Dyk presented similar idea at PhyStat2011 [arxiv.org:1006.4334]

Power of test against s=0

b-only Sgs+b

P(N | s+b)

4

~
~~~~
—
~—~--__

N events
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The Power Constraint
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An alternative to CLs that protects against setting limits when one has no
sensitivity is to explicitly define the sensitivity of the experiment in terms of power.

» A clean separation of size and power. (a new, arbitrary threshold for sensitivity)

» Feldman-Cousins foreshadowed the recommendation sensitivity defined as

50% power against b-only

» David van Dyk presented similar idea at PhyStat2011 [arxiv.org:1006.4334]

Power of test against s=0 10°

b-only Sgs+b
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The Power Constraint :gz:;;f;;;;;f‘f
An alternative to CLs that protects against setting limits when one has no
sensitivity is to explicitly define the sensitivity of the experiment in terms of power.

» A clean separation of size and power. (a new, arbitrary threshold for sensitivity)

» Feldman-Cousins foreshadowed the recommendation sensitivity defined as
950% power against b-only

» David van Dyk presented similar idea at PhyStat2011 [arxiv.org:1006.4334]

“ Both measures are useful quantities that should be reported in order to extract the most science from catalogs’

Power of test against s=0 10°
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“Power-Constrained” CLs+p limits S s |

Even for s=0, there is a 5% chance of a strong downward fluctuation that would
exclude the background-only hypothesis

» we don’t want to exclude signals for which we have no sensitivity

» idea: don’t quote limit below some threshold defined by an N-oc downward
fluctuation of b-only pseudo-experiments (for example: -10 by convention)

11

101

b‘% ol b-only expectation
\ -
bl
c
o s — -10 background
I fluctuation
o | Observed limit is
g2 ° “too lucky” for
:3 37 \ ‘ - comfort, impose
N2y | “power constraint”
(@) . 3
4 5 5 R 5 o -20 band must go
0
120 130 140 150 160 170 180 190 20(%0% tO O by Simple
m, (GeV) logical argument,
so remove it
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Coverage Comparison with CLs ::z:;;f;;;;;f‘f
The CLs procedure purposefully over-covers (“conservative”)
» and it is not possible for the reader to determine by how much

The power-constrained approach has the specified coverage until
the constraint is applied, at which point the coverage is 100%

» limits are not ‘aggressive’ in the sense that they under-cover
» recent critique of PCL here: http://arxiv.org/pdf/1109.2023v1

1.02

Coverage probability
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Coverage Comparison with CLs S e
The CLs procedure purposefully over-covers (“conservative”)
» and it is not possible for the reader to determine by how much

The power-constrained approach has the specified coverage until
the constraint is applied, at which point the coverage is 100%

» limits are not ‘aggressive’ in the sense that they under-cover
» recent critique of PCL here: http://arxiv.org/pdf/1109.2023v1

1.02

Coverage probability

088 U . =0.64

--------- PCL
086}
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Now let’s study Feldman-Cousins
" looks like this:

Feldman & Cousins “Unified Approach
Neyman Construction ,
- For each u: find region R : = i
with probability 1 — « 6 I~ = .
. . 5 = =
- Confidence Interval includes all : . V== :
consistent with observation at xg 14 — = 7
Ordering Rule specifies what region b = -
1Y 4 :
0 : I -%=_II I I 11 I 111 I 111 I 11 :
0 1 2 3 4 5 6 7
X

(o | 7 > ko

F-C ordering rule is the Likelihood Ratio

133

R, =
The F-C ordering rule follows naturally from Neyman-Pearson Lemma
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P(x|p)dx = a.

A different way to picture Feldman-Cousins
Most people think of plot on left when thinking of Feldman-Cousins

bars are regions “ordered by” R = P(n|u)/P(n|uest), With /
But this picture doesn’t generalize well to many measured quantities

Instead, just use R as the test statistic... and R is A(p)

IIIIIIIIIIIIIIII%IIII

~
I

6 :— : =
5 | L ==
4 | ===
=T — =.
3 = x
B = == buso
_ —— =
2 = = —~
_ = ——
1 i S .
- = i oo
O B EI 1 I I [ | I L1 1 I L1 1 I [ | I- ~ 'S
O 1 2 3 4 5 6 7
. “log M)
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Feldman-Cousins with and without constraint
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With a physical constraint (u>0) the confidence band changes, but
conceptually the same. Do not get empty intervals.

-2 In M(pn)

t, =—2InA(p)

Two-sided
unconstrained

22 In Mp)

oy L)

- s <0
t, = —21In A(M) — L(0,0(0))
' _on LefGm) 5 s
L(i1,0) =
Two-sided

constrained

Kyle Cranmer (NYU)

CERN School HEP, Romania, Sept. 2011

136




Modified test statistic for 1-sided upper limits
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For 1-sided upper-limit one construct a test that is more powerful for all
u>0 (but has no power for u=0) simply by discarding “upward fluctuations”

-2 In M(pn)

(LL:<

o1y 0w

_ 91y Ll6(w)

-~

0 pm>

(0

1< 0
MW@)M<

0< i<
Lpey =N

o>

One-sided
unconstrained |

22 In Mp)

One-sided
constrained |
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A real life example e, @
Each colored curve is represents a single pseudo-experiment
» the test statistic is changing as u, the parameter of interest, changes

o 2:II
S 1.8°
o -
o 1.
<

(7))

)

| -

c

-—

2

o

o)
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Coverage coenren WY

Coverage is the probability that the interval covers the true
value.

Methods based on the Neyman-Construction always cover.... by
construction.

- sometimes they over-cover (eg. “conservative”)
Bayesian methods, do not necessarily cover
» but that’s not their goal.

» but that also means you shouldn’t interpret a 95% Bayesian
“Credible Interval” in the same way

Coverage can be thought of as a calibration of our statistical
apparatus. [explain under-/over-coverage]
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Discrete Problems comenror Y

PARTICLE PHYSICS

In discrete problems (eg. number counting analysis with counts
described by a Poisson) one sees:

» discontinuities in the coverage (as a function of parameter)
» over-coverage (in some regions)

» Important for experiments with few events. There is a lot of
discussion about this, not focusing on it here

@Vé’?’)ﬂ CoVERAGE oF ‘[’%FOUENTQT ?0.%
prek Linits pr Suace Poissen Senst

| e

‘ffve VALVE OF /u——->

o (¢ e
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Neyman Construction with Nuisance parameters b |
In the strict sense, one wants coverage for u for all values of the nuisance
parameters (here €)

» The “full construction” one n

Challenge for full Neyman Construction is computational time (scan in 50-
D isn’t practical) and to avoid significant over-coverage

» note: projection of nuisance parameters is a union (eg. set theory) not
an integration (Bayesian)

ideal shape of conf. region full construction
A
&
X i
G. Punzi - PHYSTAT 05 - Oxford, UK K. Cranmer - PHYSTAT 03 - SLAC
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Profile Construction

Gary Feldman presented an approximate Neyman profile gonsiraint
Construction, based on the profile likelihood bs)*,_
ratio as an ordering rule, but only performing the "y

CENTER FOR
COSMOLOGY AND L
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Ay

—~_

construction on a subspace (eg. their conditional

maximum likelihood estimate) /’\/

A Subtlety, [Hustrated

b known exactly

the full construction

Gary Feldman 12 Formidab Workshop

EEREERERC0) . .
EEEEEEOO00 The profile construction means that one does
n | HERBROOO0O0 .
EEREOO00000 not need to scan each nuisance parameter (keeps
ERERCOO0O0000 . . ;
b r=1 dimensionality constant)
S EE NS » easier computationally (in RooStats)
n | HEBRBROOO0O0 . . .
OOooOoo00oo This approximation does not guarantee exact
0000000000
b r<<t coverage, but
—_— » tests indicate impressive performance
5
n » one can expand about the profile construction to
' Improve coverage, with the limiting case being

Kyle Cranmer (NYU) CERN School HEP, Romania, Sept. 2011
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Lecture 4

Kyle Cranmer (NYU) CERN School HEP, Romania, Sept. 2011 143




OOOOOOOOOOOO

Asymptotic Properties of likelihood based tests

&

Likelihood-based methods

Kyle Cranmer (NYU) CERN School HEP, Romania, Sept. 2011



Likelihood-based Intervals conren Y

Wilks’s theorem tells us how the profile —2log A(0) ~ X2
likelihood ratio evaluated at 9 is

“asymptotically” distributed when 0 is true

» asymptotically means there is sufficient
data that the log-likelihood function is

parabolic %

» does NOT require the model f(x|0) to be ﬁI
Gaussian -

» there are some conditions that must be —2log A(6)

met for this to true
Note common exceptions:

» a parameter has no effect on the Trial factors or the look
likelihood (eg. my when testing s=0)  elsewhere effect in high energy

related to look-elsewhere effect ~ physics.
Eilam Gross, Ofer Vitells
4 require SZO, but this jUSt leads to a Eur.Phys.J. C70 (2010) 525-530
. -Print; arXiv:1005.1891 [physics.data-an
5-function at 0 + Va2 T iprysics cataan!
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Likelihood-based Intervals conren Y

Wilks’s theorem tells us how the profile —2log A(0) ~ x?
likelihood ratio evaluated at 8 is "

“asymptotically” distributed when 0 is true

» asymptotically means there is sufficient
data that the log-likelihood function is
parabolic

» does NOT require the model f(x|0) to be
Gaussian

f(—2log A(0)|0)

So we don't really need to go to the
trouble to build its distribution by using
Toy Monte Carlo or fancy tricks with
Fourier Transforms

We can go immediately to the threshold
value of the profile likelihood ratio
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Likelihood-based Intervals ., @

[ | | | | ]
6 - @ 1
5~ -

B =2 1In L(ne=3 1 ) ]
0 E B
R . s
2 b — B
e —
0 - A EE N R NN N N N N N R N -

0 3 6 9 12 15

f
Figure from R. Cousins, And typically we only show the likelihood

Am. J. Phys. 63 398 (1995) curve and don't even bother with the
implicit (asymptotic) distribution
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: W
“The Asimov paper” e |
Recently we showed how to generalize this asymptotic approach
» generalize Wilks’s theorem when boundaries are present
» use result of Wald to get f(-2logh(p) | u’)

Asymptotic formulae for likelihood-based tests of new physics

Glen Cowan, Kyle Cranmer, Eilam Gross, Ofer Vitells
Eur.Phys.).C71:1554,2011

http://arxiv.org/abs/1007.1727v2
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http://arxiv.org/abs/1007.1727v2
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Median & bands from asymptotics “T”

Get Median and bands in seconds, not days!

""""" 350

95

10— . CL_, 95% limits
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Feldman-Cousins with and without constraint <o «Tﬁ

PARTICLE PHYSICS

Wilks’s theorem gives a short-cut for the Monte Carlo procedure used to find
threshold on test statistic = MINOS is asymptotic approximation of Feldman-Cousins

- With a physical constraint (u>0) the confidence band changes
—oqn HeO) 5

t, =—2InA(p) fy = —2InA(u) = L(0.0(0))
K p
—21n —L(L“(fg;)) i>0.
Two-sided Two-sided
- unconstrained R constrained
-.p 1 =)
N~—="11% ’ N
< | " <
B I ! =
QN “ I' [\
1 " ’ !

Kyle Cranmer (NYU CERN School HEP, Romania, Sept. 2011 151
y




CENTER FOR

Modified test statistic for 1-sided upper limits :g:,:;f:;;g;f?
For 1-sided upper-limit the threshold on the test statistic is different
> and with physical boundaries, it is again more complicated

o He8w) 4
—2In A 0 <, o L(0,0(0))
qu:{ () < p qM—<_21nW 0<i<p
. f1,0)
0 >, 0 Q>
. One-sided
One-sided

. constrained
unconstrained | !

-2 In M(pn)
-2 In AM(p)
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The Non-Central Chi-Square GotmoLocy avs «Tﬁ

Wald's theorem allows one to find the distribution of -2logA(u) when p
IS not true -- the result is a non-central chi-square distribution

Let Xi be kindependent, normally distributed —

random variables with means i and :

variances . Then the random variable
(%)
g

is distributed according to the noncentral chi- |

square distribution. It has two parameters: & ‘ s

which specifies the number of degrees of / N

freedom (i.e. the number of X7), and A whichis - =

related to the mean of the random variables o

k 2
Hi
=3 ()

A is sometime called the noncentrality
parameter. Note that some references define
A in other ways, such as half of the above
sum, or its square root.
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The main results :‘:zr;‘f:.::;;?cf‘{’

The Model is just a binned version of the s :sm/b_ ful:0,) dz,
. . Iinaz
marked Poisson we have considered
N . M my bi = btot /bin fo(x;0y) dx .
L(/L,H) _ H (MSJ + bj) g 6—(usj +b;) H Uy o~ Uk '
21 nj! P mk'
1= - Elm;] = u;(6)

The “Asimov Data” is an artificial dataset

where the “observations” are set equal to

the expected values given the parameters

of the model  n;ja = En =v; = i's(0) + (),
m; AN = E[mz] = uZ(H) .

We proved that fits to the Asimov data can

be used to get the non-centrality parameter

! (92 InL N T n; (92%' 8%‘ (9%‘ n;
needed for Wald’s theorem DY (_ _1> Dt _2]

RPAY
—21n)\A(,u)%(’u z,u) = A

. %I: (% _1> 0%, B ou; auz-@
O— o1 L U; 8(9389143 893' Gek uf‘
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How well does it work? gzirmeg:v.gcs(‘{
Monte Carlo test of asymptotic formulae

Asymptotic f(q,|1) good already for fairly small samples.
Median[g,|1] from Asimov data set; good agreement with MC.

1D|||||||||||||||||||||||||||||||||||||? UD102§
10¢ K
1_ \ s =10
3 ' s=5
107k
; s=2
10_2;_ _qD,Asimcw s =1
: median[qﬂ|1]
10_3 | 1 1 T R N A A | 1 1 Ll |||||2
1 10 10
b
G. Cowan Using the Profile Likelihood in Searches for New Physics / Banff 2010 22
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How well does it work gmﬁ:v.:cj‘{’
Monte Carlo test of asymptotic formula

n ~ Poisson(pus + b)

m ~ Poisson(7b) E
Here take 7= 1. E
Asymptotic formula 1s E
good approximation to So E
level (g, = 25) already for E
b~ 20. = E
10—8_I 111 | 1111 I 1111 | 111 | 1111 |il 114 I_I__I 1 1 | 1 11 I_
0 5 10 15 20 25 30 35 40
qD
—— G. Cowan Using the Profile Likelihood in Searches for New Physics / Banff 2010 20 —(

Kyle 156




CENTER FOR

Some non-trivial tests: boundaries comereey e 3
Monte Carlo test of asymptotic formulae

Same message for test based on g "

q,and g, give similar tests to
the extent that asymptotic
formulae are valid.

. Cowan Using the Profile Likelihood in Searches for New Physics / Banff 2010 24
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Some non-trivial tests: boundaries «;;z;«;«;e;;vgcf?

Monte Carlo test of asymptotic formulae

sty = @ (2 o)

Same message for test based on ¢ " b e [ (Vi - )] 0<q <ot
+
~ . . . 1 oxp | — 1 u=(w?=2pp') [0?)? 5 2/52
q,and g, give similar tests to R e I
the extent that asymptotic i ML LN N S AL SRR AN N
: — ' sZeb=91=1"+H " T
formulae are valid. S  ATLAS | B—vy
- B H=2fb"' =
= F 1 -
S0k -
. -1 E —
We now can describe 107 F E
effect of the boundary on i ]
the distribution of the 102 E .
test statistic. -
o! 5 a 6 85 10 12
1 qa,
. Cowan Using the Profile Likelihood in Searches for New Physics / Banff 2010 24
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The problem with p-values g:zr;:f:;g;?cs(‘%
The decision to reject the null hypothesis is based on the probability for data
you didn’t get to agree less well with the hypothesis...

- doesn’t sound very convincing when you put it that way. Other criticisms:

- test statistic is “arbitrary” (not really, it is designed to be powerful against
an alternative)

- what is the ensemble? Related to conditioning

obs b-only p-value
b-only s+b

P(N | s+b)

~
~
Sao

Nevens = more discrepant —»
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The Likelihood Principle (‘T*
Likelihood Principle

As noted above, in both Bayesian methods and likelihood-ratio
based methods, the probability (density) for obtaining the data at
hand is used (via the likelihood function), but probabilities for
obtaining other data are not used!

* In contrast, in typical frequentist calculations (e.g., a p-value which
is the probability of obtaining a value as extreme or more extreme
than that observed), one uses probabilities of data not seen.

This difference is captured by the Likelihood Principle*: If two
experiments yield likelihood functions which are proportional, then
Your inferences from the two experiments should be identical.

- L.P.is built in to Bayesian inference (except e.g., when Jeffreys
prior leads to violation).

L.P. is violated by p-values and confidence intervals.

- Although practical experience indicates that the L.P. may be too
restrictive, it is useful to keep in mind. When frequentist results
“make no sense” or “are unphysical”, in my experience the
underlying reason can be traced to a bad violation of the L.P.

*There are various versions of the L.P., strong and weak forms, etc.
Bob Cousins, CMS, 2008 46
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Goal of Likelihood-based Methods corenver,,, @Y

Likelihood-based methods settle between two conflicting desires:

» We want to obey the likelihood principle because it implies a lot of nice
things and sounds pretty attractive

» We want nice frequentist properties (and the only way we know to
incorporate those properties “by construction” will violate the likelihood

principle)
The asymptotic results give us
a a way to approximately cover
- while simultaneously obeying

the likelihood principle and
NOT using a prior

91 \
; \

[
!

T
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Bayesian methods
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Bob’s Example s:zr::‘f:.::;;?cs(‘f
A b-tagging algorithm gives a curve like this

1:I' : :77!1II’,I,;IlIKIVnII!IIII!IIII!IIII:IIII!IIII
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0_552_ ....... __leellhOOd ............... ............... ............... ............... _i

0.5:IIIIilllllllll|IIII|IIIIiIIIIiIIIIiIIIIiIIIIi | .
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Signal efficiency

One wants to decide where to cut and to optimize analysis
- For some point on the curve you have:

- P(btag| b-jet), l.e., efficiency for tagging b’s
- P(btag| not a b-jet), i.e., efficiency for background
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Bob’s example of Bayes’ theorem e |
Now that you know:
» P(btag| b-jet), l.e., efficiency for tagging b’s

» P(btag| not a b-jet), i.e., efficiency for background

Question: Given a selection of jets with btags, what fraction of them are
b-jets?
- |.e., what is P(b-jet | btag) ?

Answer: Cannot be determined from the given information!
> Need to know P(b-jet): fraction of all jets that are b-jets.
- Then Bayes’ Theorem inverts the conditionality:

* P(b-jet | btag) «P(btag|b-jet) P(b-jet)

Note, this use of Bayes’ theorem is fine for Frequentist
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An different example of Bayes’ theorem  &Ziesin: ¥
An analysis is developed to search for the Higgs boson
- background expectation is 0.1 events

+ you know P(N | no Higgs)
- signal expectation is 10 events
- you know P(N | Higgs )

Question: one observes 8 events, what is P(Higgs | N=8) ?

Answer: Cannot be determined from the given information!
 Need in addition: P(Higgs)
- no ensemble! no frequentist notion of P(Higgs)

» prior based on degree-of-belief would work, but it is subjective.
This is why some people object to Bayesian statistics for
particle physics
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Markov Chain Monte Carlo comenren @Y

PARTICLE PHYSICS

Markov Chain Monte Carlo (MCMC) is a nice technique which will produce a
sampling of a parameter space which is proportional to a posterior

» it works well in high dimensional problems
» Metropolis-Hastings Algorithm: generates a sequence of points {&(t)}

- Given the likelihood function L(&) & prior P(&), the posterior is
proportional to L(&) - P(d)

- propose a point ' to be added to the chain according to a proposal
density Q(a’'|@) that depends only on current point &

. if posterior is higher at @'than at @, then add new point to chain
- else: add &’ to the chain with probability
L(a') - P(a’) Q(ald)
L(a)-P(a) Q(a’|d)
- (appending original point @ with complementary probability)
» RooStats works with any L(&), P()
» can use any RooFit PDF as proposal function Q(a'|&)

» Helper for forming custom multivariate Gaussian, Bank of Clues, etc.

p:

» New Sequential Proposal function similar to BAT

Kyle Cranmer (NYU) CERN School HEP, Romania, Sept. 2011 165




Examples from Higgs Combination comerrer,, @

PARTICLE PHYSICS

RooStats MCMCCalculator tool used for the ATLAS and CMS Higgs
combinations. Combinations include ~25-50 channels and >100
parameters

nwsance parameters VS. Param of mterest

Posterior for parameter SigXsecOverSM

10
SigXsecOverSM
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The Jeffreys Prior i

Physicist Sir Harold Jeffreys had the clever
idea that we can “objectively” create a flat
prior uniform in a metric determined by 1(6)

Adds “minimal information” in a precise
sense, and results in: 1)(5) = ](g’)_

It has the key feature that it is invariant under reparameterization of the

—

parameter vectorgin particular, for an alternate parameterization ) we

can derive ( 96, )
det
(LJ

p(F) = p(6)
- 1(8)det? (‘)9 )
\/ dy
(l)e&) ( [i‘)lnLé‘)luL]) (00,) Unfortunately, the Jeffreys
— '(lct det : : det | — . . .
Vo \o 0y 08, D¢ prior in multiple

J l t(E 90, Ol LA L ;)o,]) dimensions causes some
-_— ae v
circumstances gives

Zf’v‘f M 90 Og; problems, and in certain
l(t( I()lnL()lnL})_ ) .
- \/‘ ey 0w l) ¥ undesirable answers.
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Reference Priors s ]
Refrerence priOrS are Ideally, such a method should be very general,

‘L C applicable to all kinds of measurements regardless
another type of ObJeCtlve of the number and type of parameters and data in-
priors, that try {o save volved. It should make use of all available informa-

tion, and coherently so, in the sense that if there is

Jeffreys’ basic idea.

more than one way to extract all relevant informa-
tion from data, the final result will not depend on the

Noninformative priors have been studied for a long chosen way. The desiderata of generality, exhaustive-
time and most of them have been found defective in ness and coherence are satisfied by Bayesian proce-
more than one way. Reference analysis arose from dures, but that of objectivity is more problematic
this study as the only general method that produces  due to the Bayesian requirement of specifying prior

priors that have the required invariance properties, 1, .ohabjlities in terms of degrees of belief. Reference
deal successfully with the marginalization paradoxes,

_ . _ analysis?, an objective Bayesian method developed
and have consistent sampling properties. X

over the past twenty-five years, solves this problem
by replacing the question “what is our prior degree

of belief?” by “what would our posterior degree of

belief be, if our prior knowledge had a minimal effect,
relative to the data, on the final inference?”

See Luc Demortier’s PhyStat 2005 proceedings
http://physics.rockefeller.edu/luc/proceedings/phystat2005_refana.ps
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Jeffreys’s Prior e T
Jeffreys’s Prior is an “objective” prior based on formal rules

(it is related to the Fisher Information and the Cramer-Rao bound]

7(6) \/detI (67). (Z(0),; =—E ae?gej lnf(X;9)| 9] .

Eilam, Glen, Ofer, and | showed in arXiv:1007.1727 that the Asimov
data provides a fast, convenient way to calculate the Fisher Information

9%In L 9%In L ov; 0V ou; Ou;
-1 1 7 ) L
Vil = —E[ ] — _ E : E :

-

Use this as basis to calculate e

Jeffreys’s prior for an arbitrary PDF! f Validate on a Poisson

Pro{gctioré of jegreys
o
o

RooWorkspace w("w");
w.factory("Uniform::u(x[0,1]1)");
w.factory("mu[100,1,2001"); 0.03
w.factory("ExtendPdf::p(u,mu)");

2

Analytic

RooStats numerical
0.02

w.defineSet("poi","mu");

w.defineSet("obs","x");

// w.defineSet("obs2","n"); o[...l...ll..:...1...1L..1...1,..1‘..r‘ :
200

20 40 60 80 100 120 140 160 180
mu

0.01}

RooJeffreysPrior pi("jeffreys","jeffreys",*w.pdf("p"),*w.set("poi"),*w.set("obs"));
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Jeffreys’s Prior e |
Validate Jeffreys’s Prior on a Gaussian y, o, and (J,0)

RooWorkspace w("w");
w.factory("Gaussian::g9(x[0,-20,20],mu[0,-5,5],sigma[1l,0,10])");
w.factory("n[10,.1,200]1");
w.factory("ExtendPdf::p(g,n)");
w.var("n")->setConstant();

w.var("sigma")->setConstant();
w.defineSet("poi","mu");

w.defineSet("obs","x");
RooJeffreysPrior pi("jeffreys","jeffreys",*w.pdf("p"),*w.set("poi"),*w.set("obs"));

Histogram of 2dJeffreys _mu_sigma |

8 - _
go.o1 e g [ Suf T T T T
L X !035__‘ i”“ | \ \ ;7}7__7_ —
° 5k ?zs{ \ W‘ 1 L1
8'008 D g°-°3 = w.oz—jé A —— *"‘—f
b+ £ F 0.015 I A
s | : 8,025 : \ AR =
2.006- Analytic & . : k AW -
! RooStats numerical vge R e Ny
0.004}- 0.015} sm.”a"z" e I ST
B 0.01f _
0.002| = Analytic
P 0.005 .
i RooStats numerical
o llAlJllLll'l'lJlLlll 1-1111111;41111141-1~11141L 0‘*'11‘ P ST BT SRS SIS SR N
5 -4 3 -2 «1 0 1 2 3 4 5 1 1.5 2 25 . 35 4 4.5 5
mu sigma
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The Bayesian Solution ',i:ir,"c‘;"f,‘:;;';?cs(‘Tﬁ
Bayesian solution generically have a prior for the parameters of
Interest as well as nuisance parameters

» 2010 recommendations largely echoes the PDG's stance.

Recommendation: When performing a Bayesian analysis one should separate
the objective likelihood function from the prior distributions to the extent possible.

Recommendation: \When performing a Bayesian analysis one should investigate
the sensitivity of the result to the choice of priors.

Warning: Flat priors in high dimensions can lead to unexpected and/or misleading
results.

Recommendation: When performing a Bayesian analysis for a single parameter
of interest, one should attempt to include Jeffreys's prior in the sensitivity analysis.
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To support the points raised above, here are some quotes from professional statisticians
(taken from selected PhyStat talks and selections from Bob Cousins lectures):

e “Perhaps the most important general lesson is that the facile use of what appear to be
uninformative priors is a dangerous practice in high dimensions.” — Brad Effron

e “meaningful prior specification of beliefs in probabilistic form over very large possibility

spaces is very difficult and may lead to a lot of arbitrariness in the specification.” —
Michael Goldstein

e “Sensitivity Analysis is at the heart of scientific Bayesianism.” — Michael Goldstein

e “Non-subjective Bayesian analysis is just a part — an important part, I believe of a
healthy sensitivity analysis to the prior choice...” J.M. Bernardo

e “Objective Bayesian analysis is the best frequentist tool around” — Jim Berger
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Coverage & Likelihood principle ::zr::s:.:azzf‘%
Methods based on the Neyman-Construction always cover.... by
construction.

- this approach violates the likelihood principle

Bayesian methods obey likelihood principle, but do not
necessarily cover

» that doesn’t mean Bayesians shouldn’t care about coverage

Coverage can be thought of as a calibration of our statistical
apparatus. [explain under-/over-coverage]

What shevll be Lthe Wiew Codoy;

Olvjec'éivg. | 5-=yesr‘sn ?H?f‘rffs is the

best Fiequeatist Loel 2revmd. -Jim Berger
Bayesian and Frequentist results answer different questions

- major differences between them may indicate severe coverage
problems and/or violations of the likelihood principle
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“‘Bayesians address the question everyone is
iInterested in, by using assumptions no-one
believes”

“Frequentists use impeccable logic to deal
with an issue of no interest to anyone”

-L. Lyons
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(Tle Exd

(Thank V!
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