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Outline
Lecture 1: Building a probability model
‣ preliminaries, the marked Poisson process
‣ incorporating systematics via nuisance parameters
‣ constraint terms
‣ examples of different “narratives” / search strategies

Lecture 2: Hypothesis testing
‣ simple models, Neyman-Pearson lemma, and likelihood ratio
‣ composite models and the profile likelihood ratio
‣ review of ingredients for a hypothesis test

Lecture 3: Limits & Confidence Intervals
‣ the meaning of confidence intervals as inverted hypothesis tests
‣ asymptotic properties of likelihood ratios
‣ Bayesian approach
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LEP Higgs
A simple likelihood
ratio with no free 
parameters
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The Test Statistic and its distribution
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Consider this schematic diagram

The “test statistic” is a single number that quantifies the entire experiment, it 
could just be number of events observed, but often its more sophisticated, like 
a likelihood ratio.  What test statistic do we choose?
And how do we build the distribution?  Usually “toy Monte Carlo”, but what 
about the uncertainties... what do we do with the nuisance parameters?
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An example
Essentially, you need to fit your model to the data twice:
once with everything floating, and once with signal fixed to 0

100

where the ai are the parameters used to parameterize the fake-tau background and ! represents all nui-680

sance parameters of the model: "H ,mZ,"Z,rQCD,a1,a2,a3. When using the alternate parameterization681

of the signal, the exact form of Equation 14 is modified to coincide with parameters of that model.682

Figure 14 shows the fit to the signal candidates for a mH = 120 GeV Higg with (a,c) and without683

(b,d) the signal contribution. It can be seen that the background shapes and normalizations are trying to684

accommodate the excess near m## = 120 GeV, but the control samples are constraining the variation.685

Table 13 shows the significance calculated from the profile likelihood ratio for the ll-channel, the lh-686

channel, and the combined fit for various Higgs boson masses.687
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Figure 14: Example fits to a data sample with the signal-plus-background (a,c) and background only

(b,d) models for the lh- and ll-channels at mH = 120 GeV with 30 fb−1 of data. Not shown are the

control samples that were fit simultaneously to constrain the background shape. These samples do not

include pileup.
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λ(µ = 0) =
P (m, a|µ = 0, ˆ̂ν(µ = 0;m, a) )

P (m, a|µ̂, ν̂)

P (m, a|µ = 0, ˆ̂ν(µ = 0;m, a) )P (m, a|µ̂, ν̂)

Kyle Cranmer (NYU)

Center for 
Cosmology and 
Particle Physics

CERN School HEP, Romania, Sept. 2011

Properties of the Profile Likelihood Ratio
After a close look at the profile likelihood ratio

one can see the function is independent of true values of !
‣ though its distribution might depend indirectly

Wilks’s theorem states that under certain conditions the 
distribution of -2 ln ! ("="0) given that the true value of " is "0 
converges to a chi-square distribution 
‣ more on this tomorrow, but the important points are:
‣ “asymptotic distribution” is known and it is independent of ! !

● more complicated if parameters have boundaries (eg. µ! 0)

Thus, we can calculate the p-value for the background-only 
hypothesis without having to generate Toy Monte Carlo!
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λ(µ) =
P (m, a|µ, ˆ̂ν(µ;m, a) )

P (m, a|µ̂, ν̂)
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Toy Monte Carlo

Profile Likelihood Ratio
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Explicitly build distribution by generating “toys” / pseudo experiments assuming a 
specific value of µ and !.  

‣ randomize both main measurement m and auxiliary measurements a
‣ fit the model twice for the numerator and denominator of profile likelihood ratio
‣ evaluate -2ln "(µ) and add to histogram

Choice of µ is straight forward: typically µ=0 and µ=1, but choice of ! is less clear
‣ more on this tomorrow

This can be very time consuming.  Plots below use millions of toy pseudo-
experiments on a model with ~50 parameters.
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What makes a statistical method
To describe a statistical method, you should clearly specify

‣ choice of a test statistic
● simple likelihood ratio (LEP)
● ratio of profiled likelihoods (Tevatron) 
● profile likelihood ratio (LHC)

‣ how you build the distribution of the test statistic
● toy MC randomizing nuisance parameters according to 

• aka Bayes-frequentist hybrid, prior-predictive, Cousins-Highland
● toy MC with nuisance parameters fixed (Neyman Construction)
● assuming asymptotic distribution (Wilks and Wald, more tomorrow)

‣ what condition you use for limit or discovery
● more on this tomorrow
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λ(µ) = Ls+b(µ, ˆ̂ν)/Ls+b(µ̂, ν̂)

QLEP = Ls+b(µ = 1)/Lb(µ = 0)

QTEV = Ls+b(µ = 1, ˆ̂ν)/Lb(µ = 0, ˆ̂ν�)

π(ν)
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Experimentalist Justification
So far this looks a bit like magic.  How can you claim that you 
incorporated your systematic just by fitting the best value of your 
uncertain parameters and making a ratio?
It won’t unless the the parametrization is sufficiently flexible.
So check by varying the settings of your simulation, and see if the 
profile likelihood ratio is still distributed as a chi-square
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Here it is pretty stable, but 
it’s not perfect (and this is 
a log plot, so it hides some 
pretty big discrepancies)

For the distribution to be 
independent of the nuisance 
parameters your 
parametrization must be 
sufficiently flexible.
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A very important point
If we keep pushing this point to the extreme, the physics problem 
goes beyond what we can handle practically
The p-values are usually predicated on the assumption that the true 
distribution is in the family of functions being considered
‣ eg. we have sufficiently flexible models of signal & background to 

incorporate all systematic effects
‣ but we don’t believe we simulate everything perfectly
‣ ..and when we parametrize our models usually we have further 

approximated our simulation.
● nature -> simulation -> parametrization

At some point these approaches are limited by honest systematics 
uncertainties (not statistical ones).  Statistics can only help us so much 
after this point. Now we must be physicists!
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Confidence Intervals (Limits)
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Confidence Interval

What is a “Confidence Interval?

‣ you see them all the time:

Want to say there is a 68% chance 
that the true value of (mW, mt) is in 
this interval

‣ but that’s P(theory|data)!

Correct frequentist statement is that 
the interval covers the true value 
68% of the time

‣ remember, the contour is a function of 
the data, which is random.  So it moves 
around from experiment to experiment
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‣Bayesian “credible interval” does 
mean probability parameter is 
in interval.  The procedure is 
very intuitive:
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Neyman Construction example
For each value of   consider 
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Neyman Construction example

Let’s focus on a particular point 
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x

f(x|θ0)

f(x|θo)
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Neyman Construction example
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x

f(x|θ0)

Let’s focus on a particular point 
‣ we want a test of size 
‣ equivalent to a                   confidence interval on 
‣ so we find an acceptance region with        probability

f(x|θo)
α

1− α

100(1− α)% θ

1− α
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Neyman Construction example
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Let’s focus on a particular point 
‣No unique choice of an acceptance region
‣ here’s an example of a lower limit

f(x|θo)

1− α

x

f(x|θ0)

1− α α
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Neyman Construction example
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x

f(x|θ0)

α/2

1− α

Let’s focus on a particular point 
‣No unique choice of an acceptance region
‣ and an example of a central limit

f(x|θo)
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x

f(x|θ0)

f(x|θ0)
f(x|θbest(x))

= kα

Neyman Construction example
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Let’s focus on a particular point 
‣ choice of this region is called an ordering rule
‣ In Feldman-Cousins approach, ordering rule is the 
likelihood ratio.  Find contour of L.R. that gives size 

f(x|θo)

1− α

α
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Neyman Construction example
Now make acceptance region for every value of
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Neyman Construction example

This makes a confidence belt for #
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Neyman Construction example
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x

θ

θ0

This makes a confidence belt for #
the regions of data in the confidence belt can be 
considered as consistent with that value of #
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Neyman Construction example
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Now we make a measurement
the points   where the belt intersects    a part of the 
confidence interval in   for this measurement    
eg. 
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For every point   , if it were true, the data would fall in its 
acceptance region with probability  
If the data fell in that region, the point   would be in the 
interval
So the interval            covers the true value with probability 
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A Point about the Neyman Construction
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This is not Bayesian... it doesn’t mean the probability 
that the true value of   is in the interval is        !θ 1− α

θtrue
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Inverting Hypothesis Tests
There is a precise dictionary that explains how to move from from 
hypothesis testing to parameter estimation.
‣ Type I error: probability interval does not cover true value of the 

parameters (eg. it is now a function of the parameters)
‣ Power is probability interval does not cover a false value of the 

parameters (eg. it is now a function of the parameters)
● We don’t know the true value, consider each point      as if it were true

What about null and alternate hypotheses?
‣ when testing a point    it is considered the null 
‣ all other points considered “alternate” 

So what about the Neyman-Pearson lemma & Likelihood ratio?
‣ as mentioned earlier, there are no guarantees like before 
‣ a common generalization that has good power is:
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The Dictionary
There is a formal 1-to-1 mapping between hypothesis tests and 
confidence intervals:
‣ some refer to the Neyman Construction as an “inverted 

hypothesis test”
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Classical Hypothesis Testing (cont.)

“Test for θ=θ0” ↔ “Is θ0 in confidence interval for θ”

Bob Cousins, CMS, 2008 44

“There is thus no need to derive optimum properties 

separately for tests and for intervals; there is a one-to-one 

correspondence between the problems as in the dictionary in 

Table 20.1” – Stuart99, p. 175.
Using the likelihood ratio hypothesis test, this correspondence is the basis 

of intervals in G. Feldman, R Cousins, Phys Rev D57 3873 (1998).
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Discovery in pictures
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N events

P(
 N

 |
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+
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 )

b-only s+b
b-only p-valueobs

more discrepant

Discovery: test b-only (null: s=0 vs. alt: s>0)
• note, one-sided alternative.  larger N is “more discrepant” 

aka “CLb”
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N events

P(
 N

 |
 s

+
b
 )

b-only s0+b
Critical region defined by 5σ

Power of test against s0

Sensitivity for discovery in pictures
When one specifies 5" one specifies a critical value for the data before 
“rejecting the null”.  
Leaves open a question of sensitivity, which is quantified as “power” of the test 
against a specific alternative

‣ In Frequentist setup, one chooses a “test statistic” to maximize power
● Neyman-Pearson lemma: likelihood ratio most powerful test for one-sided alternative
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N events
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sdown+b
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b-only

Measurements in pictures
Measurement typically denoted " = X± Y.  
‣ X is usually the “best fit” or maximum likelihood estimate
‣ ±Y usually means [X-Y, X+Y] is a 68% confidence interval

Intervals are formally “inverted hypothesis tests”: (null: s=s0 vs. alt: s# s0)
‣ One hypothesis test for each value of s0 against a two-sided alternative

‣ No “uniformly most powerful test” for a two-sided alternative
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Upper limits in pictures
What do you think is meant by “95% upper limit” ?

Is it like the picture below?
‣ ie. increase s, until the probability to have data “more discrepant” is < 5%
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Upper limits in pictures
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N events
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obs
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Upper-limits are trying to exclude large signal rates.  
‣ form a 95% “confidence interval” on s of form [0,s95]

Intervals are formally “inverted hypothesis tests”: (null: s=s0 vs. alt: s<s0)
‣ One hypothesis test for each value of s0 against a one-sided alternative

Power of test depends on specific values of null s0 and alternate s’
‣ but “uniformly most powerful” since it is a one-sided alternative
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The sensitivity problem
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N events

P(
 N

 |
 s
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b
 )

b-only

5%

s95+b

The physicist’s worry about limits in general is that if there is a strong 
downward fluctuation, one might exclude arbitrarily small values of s
‣ with a procedure that produces proper frequentist 95% confidence 

intervals, one should expect to exclude the true value of s 5% of the time, 
no matter how small s is!

‣ This is not a problem with the procedure, but an undesirable consequence of the Type I / Type 
II error-rate setup
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Power in the context of limits
Remember, when creating confidence intervals the null is s=s0

‣ and power is defined under a specific alternative (eg. s=0)
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N events
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"CLs+b"

"CLb"

CLs

To address the sensitivity problem, CLs was introduced
‣ common (misused) nomenclature: CLs = CLs+b/CLb

‣ idea: only exclude if CLs<5%  (if CLb is small, CLs gets bigger)
CLs is known to be “conservative” (over-cover): expected limit covers with 97.5%

● Note: CLs is NOT a probability
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“The CLs ... methods combine size and power in a very ad hoc way and are 
unlikely to have satisfactory statistical properties.” -- D. Cox & N. Reid
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The Power Constraint
An alternative to CLs that protects against setting limits when one has no 
sensitivity is to explicitly define the sensitivity of the experiment in terms of power.
‣ A clean separation of size and power.  (a new, arbitrary threshold for sensitivity)

‣ Feldman-Cousins foreshadowed the recommendation sensitivity defined as 
50% power against b-only

‣ David van Dyk presented similar idea at PhyStat2011 [arxiv.org:1006.4334]
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The Power Constraint
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“ Both measures are useful quantities that should be reported in order to extract the most science from catalogs”
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“Power-Constrained” CLs+b limits
Even for s=0, there is a 5% chance of a strong downward fluctuation that would 
exclude the background-only hypothesis
‣ we don’t want to exclude signals for which we have no sensitivity
‣ idea: don’t quote limit below some threshold defined by an N-" downward 

fluctuation of b-only pseudo-experiments (for example: -1" by convention)
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Observed limit is 
“too lucky” for 
comfort, impose 
“power constraint”

-2" band must go 
to 0 by simple 
logical argument, 
so remove it
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Coverage Comparison with CLs
The CLs procedure purposefully over-covers (“conservative”)
‣ and it is not possible for the reader to determine by how much

The power-constrained approach has the specified coverage until 
the constraint is applied, at which point the coverage is 100%
‣ limits are not ‘aggressive’ in the sense that they under-cover
‣ recent critique of PCL here:
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Now let’s study Feldman-Cousins
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A different way to picture Feldman-Cousins
Most people think of plot on left when thinking of Feldman-Cousins

‣ bars are regions “ordered by”                            with 
But this picture doesn’t generalize well to many measured quantities.

‣ Instead, just use R as the test statistic... and R is !(µ)
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FIG. 1. A generic confidence belt construction and its use. For each value of µ, one draws
a horizontal acceptance interval [x1, x2] such that P (x ∈ [x1, x2] |µ) = α. Upon performing an

experiment to measure x and obtaining the value x0, one draws the dashed vertical line through
x0. The confidence interval [µ1, µ2] is the union of all values of µ for which the corresponding
acceptance interval is intercepted by the vertical line.
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max(0, n − b), and is given in the third column of Table I. We then compute P (n|µbest),
which is given in the fourth column. The fifth column contains the ratio,

R = P (n|µ)/P (n|µbest), (4.1)

and is the quantity on which our ordering principle is based. R is a ratio of two likelihoods:
the likelihood of obtaining n given the actual mean µ, and the likelihood of obtaining n
given the best-fit physically allowed mean. Values of n are added to the acceptance region
for a given µ in decreasing order of R, until the sum of P (n|µ) meets or exceeds the desired
C.L. This ordering, for values of n necessary to obtain total probability of 90%, is shown
in the column labeled “rank”. Thus, the acceptance region for µ = 0.5 (analogous to a
horizontal line segment in Figure 1), is the interval n = [0, 6]. Due to the discreteness of n,
the acceptance region contains more summed probability than 90%; this is unavoidable no
matter what the ordering principle, and leads to confidence intervals which are conservative.

For comparison, in the column of Table I labeled “U.L.”, we place check marks at the
values of n which are in the acceptance region of standard 90% C.L. upper limits for this
example; and in the column labeled “central”, we place check marks at the values of n which
are in the acceptance region of standard 90% C.L central confidence intervals.

The construction proceeds by finding the acceptance region for all values of µ, for the
given value of b. With a computer, we perform the construction on a grid of discrete values
of µ, in the interval [0, 50] in steps of 0.005. This suffices for the precision desired (0.01) in
endpoints of confidence intervals. We find that a mild pathology arises as a result of the
fact that the observable n is discrete. When the vertical dashed line is drawn at some n0 (in
analogy with in Fig. 1), it can happen that the set of intersected horizontal line segments is
not simply connected. When this occurs we naturally take the confidence interval to have
µ1 corresponding to the bottom-most segment intersected, and to have µ2 corresponding to
the top-most segment intersected.

We then repeat the construction for a selection of fixed values of b. We find an additional
mild pathology, again caused by the discreteness in n: when we compare the results for
different values of b for fixed n0, the upper endpoint µ2 is not always a decreasing function
of b, as would be expected. When this happens, we force the function to be non-increasing,
by lengthening selected confidence intervals as necessary. We have investigated this behavior,
and compensated for it, over a fine grid of b in the range [0, 25] in increments of 0.001 (with
some additional searching to even finer precision).

Our compensation for the two pathologies mentioned in the previous paragraphs adds
slightly to our intervals’ conservatism, which however remains dominated by the unavoidable
effects due to the discreteness in n.

The confidence belts resulting from our construction are shown in Fig. 7, which may
be compared with Figs. 5 and 6. At large n, Fig. 7 is similar to Fig. 6; the background
is effectively subtracted without constraint, and our ordering principle produces two-sided
intervals which are approximately central intervals. At small n, the confidence intervals from
Fig. 7 automatically become upper limits on µ; i.e., the lower endpoint µ1 is 0 for n ≤ 4
in this case. Thus, flip-flopping between Figs. 5 and 6 is replaced by one coherent set of
confidence intervals, (and no interval is the empty set).

Tables II-IX give our confidence intervals [µ1, µ2] for the signal mean µ for the most
commonly used confidence levels, namely 68.27% (sometimes called 1-σ intervals by analogy

8

with Gaussian intervals), 90%, 95%, and 99%. Values in italics indicate results which must
be taken with particular caution, since the probability of obtaining the number of events
observed or fewer is less than 1%, even if µ = 0. (See Sec. IVC below.)

Figure 8 shows, for n = 0 through n = 10, the value of µ2 as a function of b, for
90% C.L. The small horizontal sections in the curves are the result of the mild pathology
mentioned above, in which the original curves make a small dip, which we have eliminated.
Dashed portions in the lower right indicate results which must be taken with particular
caution, corresponding to the italicized values in the tables. Dotted portions on the upper
left indicate regions where µ1 is non-zero. These corresponding values of µ1 are shown in
Fig. 9.

Figure 8 can be compared with the Bayesian calculation in Fig. 28.8 of Ref. [2] which
uses a uniform prior for µt. A noticeable difference is that our curve for n = 0 decreases
as a function of b, while the result of the Bayesian calculation stays constant (at 2.3). The
decreasing limit in our case reflects the fact that P (n0|µ) decreases as b increases. We find
that objections to this behavior are typically based on a misplaced Bayesian interpretation
of classical intervals, namely the attempt to interpret them as statements about P (µt|n0).

B. Gaussian with Boundary at Origin

It is straightforward to apply our ordering principle to the other troublesome example
of Sec. III, the case of a Gaussian resolution function (Eq. 3.1) for µ, when µ is physically
bounded to non-negative values. In analogy with the Poisson case, for a particular x,
we let µbest be the physically allowed value of µ for which P (x|µ) is maximum. Then
µbest = max(0, x), and

P (x|µbest) =

{

1/
√

2π, x ≥ 0
exp(−x2/2)/

√
2π, x < 0.

(4.2)

We then compute R in analogy to Eq. 4.1, using Eqs. 3.1 and 4.2:

R(x) =
P (x|µ)

P (x|µbest)
=

{

exp(−(x − µ)2/2), x ≥ 0
exp(xµ − µ2/2), x < 0.

(4.3)

During our Neyman construction of confidence intervals, R determines the order in which
values of x are added to the acceptance region at a particular value of µ. In practice, this
means that for a given value of µ, one finds the interval [x1, x2] such that R(x1) = R(x2)
and

∫ x2

x1

P (x|µ)dx = α. (4.4)

We solve for x1 and x2 numerically to the desired precision, for each µ in a grid with
0.001 spacing. With the acceptance regions all constructed, we then read off the confidence
intervals [µ1, µ2] for each x0 as in Fig. 1.

Table X contains the results for representative measured values and confidence levels.
Figure 10 shows the confidence belt for 90% C.L.

It is instructive to compare Fig. 10 with Fig. 3. At large x, the confidence intervals
[µ1, µ2] are the same in both plots, since that is far away from the constraining boundary.
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In many analyses, the contribution of the signal process to the mean number of events is

assumed to be non-negative. This condition effectively implies that any physical estimator

for µ must be non-negative. Even if we regard this to be the case, however, it is convenient

to define an effective estimator µ̂ as the value of µ that maximizes the likelihood, even this

gives µ̂ < 0 (but providing that the Poisson mean values, µsi+ bi, remain nonnegative). This

will allow us in Sec. 3.1 to model µ̂ as a Gaussian distributed variable, and in this way we can

determine the distributions of the test statistics that we consider. Therefore in the following

we will always regard µ̂ as an effective estimator which is allowed to take on negative values.

2.1 Test statistic tµ = −2 lnλ(µ)

From the definition of λ(µ) in Eq. (7), one can see that 0 ≤ λ ≤ 1, with λ near 1 implying good

agreement between the data and the hypothesized value of µ. Equivalently it is convenient

to use the statistic

tµ = −2 lnλ(µ) (8)

as the basis of a statistical test. Higher values of tµ thus correspond to increasing incompat-

ibility between the data and µ.

We may define a test of a hypothesized value of µ by using the statistic tµ directly

as measure of discrepancy between the data and the hypothesis, with higher values of tµ
correspond to increasing disagreement. To quantify the level of disagreement we compute

the p-value,

pµ =

� ∞

tµ,obs

f(tµ|µ) dtµ , (9)

where tµ,obs is the value of the statistic tµ observed from the data and f(tµ|µ) denotes the

pdf of tµ under the assumption of the signal strength µ. Useful approximations for this and

other related pdfs are given in Sec. 3.3. The relation between the p-value and the observed

tµ and also with the significance Z are illustrated in Fig. 1.

(a) (b)

Figure 1: (a) Illustration of the relation between the p-value obtained from an observed value of

the test statistic tµ. (b) The standard normal distribution ϕ(x) = (1/
√
2π) exp(−x2/2) showing the

relation between the significance Z and the p-value.

When using the statistic tµ, a data set may result in a low p-value in two distinct ways:

the estimated signal strength µ̂ may be found greater or less than the hypothesized value µ.
As a result, the set of µ values that are rejected because their p-values are found below a

specified threshold α may lie to either side of those values not rejected, i.e., one may obtain

a two-sided confidence interval for µ.
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When using the statistic tµ, a data set may result in a low p-value in two distinct ways:

the estimated signal strength µ̂ may be found greater or less than the hypothesized value µ.
As a result, the set of µ values that are rejected because their p-values are found below a
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a two-sided confidence interval for µ.

5

Kyle Cranmer (NYU)

Center for 
Cosmology and 
Particle Physics

CERN School HEP, Romania, Sept. 2011

Feldman-Cousins with and without constraint
With a physical constraint (µ>0) the confidence band changes, but 
conceptually the same.  Do not get empty intervals.
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In many analyses, the contribution of the signal process to the mean number of events is

assumed to be non-negative. This condition effectively implies that any physical estimator

for µ must be non-negative. Even if we regard this to be the case, however, it is convenient

to define an effective estimator µ̂ as the value of µ that maximizes the likelihood, even this

gives µ̂ < 0 (but providing that the Poisson mean values, µsi+ bi, remain nonnegative). This

will allow us in Sec. 3.1 to model µ̂ as a Gaussian distributed variable, and in this way we can

determine the distributions of the test statistics that we consider. Therefore in the following

we will always regard µ̂ as an effective estimator which is allowed to take on negative values.

2.1 Test statistic tµ = −2 lnλ(µ)

From the definition of λ(µ) in Eq. (7), one can see that 0 ≤ λ ≤ 1, with λ near 1 implying good

agreement between the data and the hypothesized value of µ. Equivalently it is convenient

to use the statistic

tµ = −2 lnλ(µ) (8)

as the basis of a statistical test. Higher values of tµ thus correspond to increasing incompat-

ibility between the data and µ.

We may define a test of a hypothesized value of µ by using the statistic tµ directly

as measure of discrepancy between the data and the hypothesis, with higher values of tµ
correspond to increasing disagreement. To quantify the level of disagreement we compute

the p-value,

pµ =

� ∞

tµ,obs

f(tµ|µ) dtµ , (9)

where tµ,obs is the value of the statistic tµ observed from the data and f(tµ|µ) denotes the

pdf of tµ under the assumption of the signal strength µ. Useful approximations for this and

other related pdfs are given in Sec. 3.3. The relation between the p-value and the observed

tµ and also with the significance Z are illustrated in Fig. 1.
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Figure 1: (a) Illustration of the relation between the p-value obtained from an observed value of

the test statistic tµ. (b) The standard normal distribution ϕ(x) = (1/
√
2π) exp(−x2/2) showing the

relation between the significance Z and the p-value.

When using the statistic tµ, a data set may result in a low p-value in two distinct ways:

the estimated signal strength µ̂ may be found greater or less than the hypothesized value µ.
As a result, the set of µ values that are rejected because their p-values are found below a

specified threshold α may lie to either side of those values not rejected, i.e., one may obtain

a two-sided confidence interval for µ.

5

2.2 Test statistic t̃µ for µ ≥ 0

Often one assumes that the presence of a new signal can only increase the mean event rate
beyond what is expected from background alone. That is, the signal process necessarily has
µ ≥ 0, and to take this into account we define an alternative test statistic below called t̃µ.

Even for when considering models for which µ ≥ 0, however, we will not restrict the
effective estimator µ̂ to be positive, and if the data fluctuate low relative to the expected
background one can find µ̂ < 0. By defining µ̂ in this way we will see in Sec. 3.1 that its
sampling distribution can be approximated by a Gaussian, which in turn allows one to obtain
simple approximations for the pdfs of the test statistics considered.

For a model where µ ≥ 0, if one finds data such that µ̂ < 0, then the best level of
agreement between the data and any physical value of µ occurs for µ = 0. We therefore
define

λ̃(µ) =






L(µ,ˆ̂θ(µ))

L(µ̂,θ̂)
µ̂ ≥ 0,

L(µ,ˆ̂θ(µ))

L(0,ˆ̂θ(0))
µ̂ < 0 .

(10)

Here ˆ̂θ(0) and ˆ̂θ(µ) refer to the conditional ML estimators of θ given a strength parameter
of 0 or µ, respectively.

The variable λ̃(µ) can be used instead of λ(µ) in Eq. (8) to obtain the corresponding test
statistic, which we denote t̃µ. That is,

t̃µ = −2 ln λ̃(µ) =






−2 ln L(µ,ˆ̂θ(µ))

L(0,ˆ̂θ(0))
µ̂ < 0 ,

−2 ln L(µ,ˆ̂θ(µ))

L(µ̂,θ̂)
µ̂ ≥ 0 .

(11)

As was done with the statistic tµ, one can quantify the level of disagreement between the
data and the hypothesized value of µ with the p-value, just as in Eq. (9). An approximate
formula for the distribution of t̃µ needed to do this is given in Sec. 3.4.

Also similar to the case of tµ, values of µ both above and below µ̂ may be excluded by a
given data set, i.e., one may obtain either a one-sided or two-sided confidence interval for µ.
For the case of no nuisance parameters, the test variable t̃µ is equivalent to what is used in
constructing confidence intervals according to the procedure of Feldman and Cousins [8].

2.3 Test statistic q0 for discovery of a positive signal

An important special case of the statistic t̃µ described above is used to test µ = 0 in a class
of model where we assume µ ≥ 0. Rejecting the µ = 0 hypothesis effectively leads to the
discovery of a new signal. For this important case we use the special notation q0 = t̃0. Using
the definition (11) with µ = 0 one finds

q0 =






−2 lnλ(0) µ̂ ≥ 0 ,

0 µ̂ < 0 ,
(12)

where λ(0) is the profile likelihood ratio for µ = 0 as defined in Eq. (7).
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Modified test statistic for 1-sided upper limits
For 1-sided upper-limit one construct a test that is more powerful for all 
µ>0 (but has no power for µ=0) simply by discarding “upward fluctuations”
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We may contrast this to the statistic t0, i.e., Eq. (8), used to test µ = 0. In this case
one may reject the µ = 0 hypothesis for either an upward or downward fluctuation of the
data. This is appropriate if the presence of a new phenomenon could lead to an increase or
decrease in the number of events found. In an experiment looking for neutrino oscillations,
for example, the signal hypothesis may predict a greater or lower event rate than the no-
oscillation hypothesis.

When using q0, however, we consider the data to show lack of agreement with the
background-only hypothesis only if µ̂ > 0. That is, a value of µ̂ much below zero may
indeed constitute evidence against the background-only model, but this type of discrepancy
does not show that the data contain signal events, but rather points to some other systematic
error. For the present discussion, however, we assume that the systematic uncertainties are
dealt with by the nuisance parameters θ.

If the data fluctuate such that one finds fewer events than even predicted by background
processes alone, then µ̂ < 0 and one has q0 = 0. As the event yield increases above the
expected background, i.e., for increasing µ̂, one finds increasingly large values of q0, corre-
sponding to an increasing level of incompatibility between the data and the µ = 0 hypothesis.

To quantify the level of disagreement between the data and the hypothesis of µ = 0 using
the observed value of q0 we compute the p-value in the same manner as done with tµ, namely,

p0 =
� ∞

q0,obs
f(q0|0) dq0 . (13)

Here f(q0|0) denotes the pdf of the statistic q0 under assumption of the background-only
(µ = 0) hypothesis. An approximation for this and other related pdfs are given in Sec. 3.5.

2.4 Test statistic qµ for upper limits

For purposes of establishing an upper limit on the strength parameter µ, we consider two
closely related test statistics. First, we may define

qµ =

�
−2 lnλ(µ) µ̂ ≤ µ ,

0 µ̂ > µ ,
(14)

where λ(µ) is the profile likelihood ratio as defined in Eq. (7). The reason for setting qµ = 0
for µ̂ > µ is that when setting an upper limit, one would not regard data with µ̂ > µ as
representing less compatibility with µ than the data obtained, and therefore this is not taken
as part of the rejection region of the test. From the definition of the test statistic one sees that
higher values of qµ represent greater incompatibility between the data and the hypothesized
value of µ.

One should note that q0 is not simply a special case of qµ with µ = 0, but rather has a
different definition (see Eqs. (12) and (14)). That is, q0 is zero if the data fluctuate downward
(µ̂ < 0), but qµ is zero if the data fluctuate upward (µ̂ > µ). With that caveat in mind, we will
often refer in the following to qµ with the idea that this means either q0 or qµ as appropriate
to the context.

As with the case of discovery, one quantifies the level of agreement between the data and
hypothesized µ with p-value. For, e.g., an observed value qµ,obs, one has

7

pµ =

� ∞

qµ,obs

f(qµ|µ) dqµ , (15)

which can be expressed as a significance using Eq. (1). Here f(qµ|µ) is the pdf of qµ assuming

the hypothesis µ. In Sec. 3.6 we provide useful approximations for this and other related

pdfs.

2.5 Alternative test statistic q̃µ for upper limits

For the case where one considers models for which µ ≥ 0, the variable λ̃(µ) can be used

instead of λ(µ) in Eq. (14) to obtain the corresponding test statistic, which we denote q̃µ.
That is,

q̃µ =





−2 ln λ̃(µ) µ̂ ≤ µ

0 µ̂ > µ
=






−2 ln
L(µ,ˆ̂θ(µ))

L(0,ˆ̂θ(0))
µ̂ < 0

−2 ln
L(µ,ˆ̂θ(µ))

L(µ̂,θ̂)
0 ≤ µ̂ ≤ µ

0 µ̂ > µ .

(16)

We give an approximation for the pdf f(q̃µ|µ�
) in Sec. 3.7.

In numerical examples we have found that the difference between the tests based on qµ
(Eq. (14)) and q̃µ usually to be negligible, but use of qµ leads to important simplifications.

Furthermore, in the context of the approximation used in Sec. 3, the two statistics are equiv-

alent. That is, assuming the approximations below, qµ can be expressed as a monotonic

function of q̃µ and thus they lead to the same results.

3 Approximate sampling distributions

In order to find the p-value of a hypothesis using Eqs. (13) or (15) we require the sampling

distribution for the test statistic being used. In the case of discovery we are testing the

background-only hypothesis (µ = 0) and therefore we need f(q0|0), where q0 is defined by

Eq. (12). When testing a nonzero value of µ for purposes of finding an upper limit we need

the distribution f(qµ|µ) where qµ is defined by Eq. (14), or alternatively we require the pdf

of the corresponding statistic q̃µ as defined by Eq. (16). In this notation the subscript of q
refers to the hypothesis being tested, and the second argument in f(qµ|µ) gives the value of

µ assumed in the distribution of the data.

We also need the distribution f(qµ|µ�
) with µ �= µ�

to find what significance to expect and

how this is distributed if the data correspond to a strength parameter different from the one

being tested. For example, it is useful to characterize the sensitivity of a planned experiment

by quoting the median significance, assuming data distributed according to a specified signal

model, with which one would expect to exclude the background-only hypothesis. For this one

would need f(q0|µ�
), usually with µ�

= 1. From this one can find the median q0, and thus the

median discovery significance. When considering upper limits, one would usually quote the

value of µ for which the median p-value is equal to 0.05, as this gives the median upper limit

on µ at 95% confidence level. In this case one would need f(qµ|0) (or alternatively f(q̃µ|0)).
In Sec. 3.1 we present an approximation for the profile likelihood ratio, valid in the large

sample limit. This allows one to obtain approximations for all of the required distributions,

which are given in Sections 3.3 through 3.6 The approximations become exact in the large
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−2 ln
L(µ,ˆ̂θ(µ))

L(0,ˆ̂θ(0))
µ̂ < 0

−2 ln
L(µ,ˆ̂θ(µ))

L(µ̂,θ̂)
0 ≤ µ̂ ≤ µ

0 µ̂ > µ .

(16)

We give an approximation for the pdf f(q̃µ|µ�
) in Sec. 3.7.

In numerical examples we have found that the difference between the tests based on qµ
(Eq. (14)) and q̃µ usually to be negligible, but use of qµ leads to important simplifications.

Furthermore, in the context of the approximation used in Sec. 3, the two statistics are equiv-

alent. That is, assuming the approximations below, qµ can be expressed as a monotonic

function of q̃µ and thus they lead to the same results.

3 Approximate sampling distributions

In order to find the p-value of a hypothesis using Eqs. (13) or (15) we require the sampling

distribution for the test statistic being used. In the case of discovery we are testing the

background-only hypothesis (µ = 0) and therefore we need f(q0|0), where q0 is defined by

Eq. (12). When testing a nonzero value of µ for purposes of finding an upper limit we need

the distribution f(qµ|µ) where qµ is defined by Eq. (14), or alternatively we require the pdf

of the corresponding statistic q̃µ as defined by Eq. (16). In this notation the subscript of q
refers to the hypothesis being tested, and the second argument in f(qµ|µ) gives the value of

µ assumed in the distribution of the data.

We also need the distribution f(qµ|µ�
) with µ �= µ�

to find what significance to expect and

how this is distributed if the data correspond to a strength parameter different from the one

being tested. For example, it is useful to characterize the sensitivity of a planned experiment

by quoting the median significance, assuming data distributed according to a specified signal

model, with which one would expect to exclude the background-only hypothesis. For this one

would need f(q0|µ�
), usually with µ�

= 1. From this one can find the median q0, and thus the

median discovery significance. When considering upper limits, one would usually quote the

value of µ for which the median p-value is equal to 0.05, as this gives the median upper limit

on µ at 95% confidence level. In this case one would need f(qµ|0) (or alternatively f(q̃µ|0)).
In Sec. 3.1 we present an approximation for the profile likelihood ratio, valid in the large

sample limit. This allows one to obtain approximations for all of the required distributions,

which are given in Sections 3.3 through 3.6 The approximations become exact in the large

8
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A real life example
Each colored curve is represents a single pseudo-experiment
‣ the test statistic is changing as µ, the parameter of interest, changes
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Study on H→WW at 160GeV

Extracting the upper limits
• The colored curves stand for values of evaluating Toy-Data

with different µ points

Haoshuang Ji First attempt on Higgs combination
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Coverage
Coverage is the probability that the interval covers the true 
value.

Methods based on the Neyman-Construction always cover.... by 
construction.
‣ sometimes they over-cover (eg. “conservative”)

Bayesian methods, do not necessarily cover
‣ but that’s not their goal.
‣ but that also means you shouldn’t interpret a 95% Bayesian 
“Credible Interval” in the same way

Coverage can be thought of as a calibration of our statistical 
apparatus. [explain under-/over-coverage]
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Discrete Problems

140

In discrete problems (eg. number counting analysis with counts 
described by a Poisson) one sees:
‣ discontinuities in the coverage (as a function of parameter)
‣ over-coverage (in some regions)
‣ Important for experiments with few events.  There is a lot of 

discussion about this, not focusing on it here

n
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Neyman Construction with Nuisance parameters
In the strict sense, one wants coverage for µ for all values of the nuisance 
parameters (here $)
‣ The “full construction” one n

Challenge for full Neyman Construction is computational time (scan in 50-
D isn’t practical) and to avoid significant over-coverage 
‣ note: projection of nuisance parameters is a union (eg. set theory) not 

an integration (Bayesian)
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, but some overcoverage may just be a natural

µµ
min

µ
max

(x0,e0)

ideal shape of conf. region

ε

Figure 1: The Neyman construction for a test statistic x,
an auxiliary measurement M , and a nuisance parameter
b. Vertical planes represent acceptance regions Wb for H0

given b. The condition for discovery corresponds to data
(x0, M0) that do not intersect any acceptance region.
The contours of L(x, M |H0, b) are in color.

where b̂ conditionally maximizes L(x, M |H1, b) and ˆ̂b
conditionally maximizes L(x, M |H0, b).

Now let us take s = 50 and ∆ = 5%, both of which
could be determined from Monte Carlo. In our toy ex-
ample, we collect data M0 = 100. Let α = 2.85 ·10−7,
which corresponds to 5σ. The question now is how
many events x must we observe to claim a discovery?1

The condition for discovery is that (x0, M0) do not lie
in any acceptance region Wb. In Fig. 1 a sample of
acceptance regions are displayed. One can imagine a
horizontal plane at M0 = 100 slicing through the var-
ious acceptance regions. The condition for discovery
is that x0 > xmax where xmax is the maximal x in the
intersection.

There is one subtlety which arises from the or-
dering rule in Eq. 5. The acceptance region Wb =
{(x, M) | l > lα} is bounded by a contour of the
likelihood ratio and must satisfy the constraint of size:∫

Wb
L(x, M |H0, b) = (1 − α). While it is true that

the likelihood is independent of b, the constraint on
size is dependent upon b. Similar tests are achieved
when lα is independent of b. The contours of the like-
lihood ratio are shown in Fig. 2 together with con-
tours of L(x, M |H0, b). While tests are roughly sim-
ilar for b ≈ M , similarity is violated for M # b.
This violation should be irrelevant because clearly
b # M should not be accepted. This problem can
be avoided by clipping the acceptance region around
M = b ± N∆b, where N is sufficiently large (≈ 10)
to have negligible affect on the size of the acceptance

1In practice, one would measure x0 and M0 and then ask,
“have we made a discovery?”. For the sake of explanation, we
have broken this process into two pieces.
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Figure 2: Contours of the likelihood L(x, M |H0, b) are
shown as concentric ellipses for b = 32 and b = 80.
Contours of the likelihood ratio in Eq. 5 are shown as
diagonal lines. This figure schematically illustrates that if
one chooses acceptance regions based solely on contours
of the likelihood ratio, that similarity is badly violated.
For example, data M = 80, x = 130 would be considered
part of the acceptance region for b = 32, even though it
should clearly be ruled out.

region. Fig. 1 shows the acceptance region with this
slight modification.

In the case where s = 50, ∆ = 5%, and M0 = 100,
one must observe 167 events to claim a discovery.
While no figure is provided, the range of b consis-
tent with M0 = 100 (and no constraint on x) is
b ∈ [68, 200]. In this range, the tests are similar to
a very high degree.

7. THE COUSINS-HIGHLAND
TECHNIQUE

The Cousins-Highland approach to hypothesis test-
ing is quite popular [4] because it is a simple smear-
ing on the nuisance parameter [5]. In particular, the
background-only hypothesis L(x|H0, b) is transformed
from a compound hypothesis with nuisance parameter
b to a simple hypothesis L′(x|H0) by

L′(x|H0) =
∫

b
L(x|H0, b)L(b)db, (6)

where L(b) is typically a normal distribution. The
problem with this method is largely philosophical:
L(b) is meaningless in a frequentist formalism. In a
Bayesian formalism one can obtain L(b) by consider-
ing L(M |b) and inverting it with the use of Bayes’s
theorem and the a priori likelihood for b. Typically,
L(M |b) is normal and one assumes a flat prior on b.

In the case where s = 50, L(b) is a normal distribu-
tion with mean µ = M0 = 100 and standard deviation
σ = ∆M0 = 5, one must observe 161 events to claim a
discovery. Initially, one might think that 161 is quite

PHYSTAT2003,  SLAC, Stanford, California, September 8-11, 2003
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Profile Construction

The profile construction means that one does 
not need to scan each nuisance parameter (keeps 
dimensionality constant)
‣ easier computationally (in RooStats)

This approximation does not guarantee exact 
coverage, but
‣ tests indicate impressive performance
‣ one can expand about the profile construction to 

improve coverage, with the limiting case being 
the full construction
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Gary Feldman presented an approximate Neyman 
Construction, based on the profile likelihood 
ratio as an ordering rule, but only performing the 
construction on a subspace (eg. their conditional 
maximum likelihood estimate)
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Lecture 4
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Asymptotic Properties of likelihood based tests 

& 

Likelihood-based methods
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Likelihood-based Intervals

Wilks’s theorem tells us how the profile 
likelihood ratio evaluated at % is 
“asymptotically” distributed when ! is true
‣ asymptotically means there is sufficient 

data that the log-likelihood function is 
parabolic

‣ does NOT require the model f(x|!) to be 
Gaussian

‣ there are some conditions that must be 
met for this to true

Note common exceptions:
‣ a parameter has no effect on the 

likelihood (eg. mH when testing s=0)  
related to look-elsewhere effect

‣ require s!0, but this just leads to a       
&-function at 0 + "#$
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Trial factors or the look 
elsewhere effect in high energy 

physics.
Eilam Gross, Ofer Vitells 

Eur.Phys.J. C70 (2010) 525-530
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Likelihood-based Intervals

Wilks’s theorem tells us how the profile 
likelihood ratio evaluated at % is 
“asymptotically” distributed when ! is true
‣ asymptotically means there is sufficient 

data that the log-likelihood function is 
parabolic

‣ does NOT require the model f(x|!) to be 
Gaussian

So we don’t really need to go to the 
trouble to build its distribution by using 
Toy Monte Carlo or fancy tricks with 
Fourier Transforms

We can go immediately to the threshold 
value of the profile likelihood ratio
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Likelihood-based Intervals
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Likelihood-Ratio Interval example

68% C.L. likelihood-ratio interval 

for Poisson process with n=3 

observed:

!"(µ) = µ3 exp(-µ)/3!

Maximum at µ = 3.

Bob Cousins, CMS, 2008 35

∆2ln! = 12 for approximate ±1 

Gaussian standard deviation  

yields interval [1.58, 5.08]

!"#$%&'(%)*'+,'-)$."/.0'''''''''''''

1*,'2,'345.,'67'789':;88<=

And typically we only show the likelihood 
curve and don’t even bother with the 
implicit (asymptotic) distribution
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“The Asimov paper”
Recently we showed how to generalize this asymptotic approach
‣ generalize Wilks’s theorem when boundaries are present
‣ use result of Wald to get f(-2log!(µ) | µ’)
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Eur.Phys.J.C71:1554,2011

Asymptotic formulae for likelihood-based tests of new physics
Glen Cowan, Kyle Cranmer, Eilam Gross, Ofer Vitells

http://arxiv.org/abs/1007.1727v2
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Figure 2: Illustration of the the p-
value corresponding to the median
of qµ assuming a strength parame-
ter µ′ (see text).

procedure can be extended to the case where several search channels are combined, and in
Sec. 4.3 we describe how to give statistical error bands for the sensitivity.

4.1 The median significance from Asimov values of the test statistic

By using the Asimov data set one can easily obtain the median values of q0, qµ and q̃µ, and
these lead to simple expressions for the corresponding median significance. From Eqs. (53),
(60) and (68) one sees that the significance Z is a monotonic function of q, and therefore
the median Z is simply given by the corresponding function of the median of q, which is
approximated by its Asimov value. For discovery using q0 one wants the median discov-
ery significance assuming a strength parameter µ

′ and for upper limits one is particularly
interested in the median exclusion significance assuming µ

′ = 0, med[Zµ|0]. For these one
obtains

med[Z0|µ′] =
√
q0,A , (79)

med[Zµ|0] =
√
qµ,A . (80)

When using q̃µ for establishing upper limits, the general expression for the exclusion
significance Zµ is somewhat more complicated depending on µ

′, but is in any case found by
substituting the appropriate values of q̃µ,A and σA into Eq. (68). For the usual case where one
wants the median significance for µ assuming data distributed according to the background-
only hypothesis (µ′ = 0), Eq. (68) reduces in fact to a relation of the same form as Eq. (60),
and therefore one finds

med[Zµ|0] =
√

q̃µ,A . (81)

4.2 Combining multiple channels

In many analyses, there can be several search channels which need to be combined. For
each channel i there is a likelihood function Li(µ,θi), where θi represents the set of nuisance
parameters for the ith channel, some of which may be common between channels. Here
the strength parameter µ is assumed to be the same for all channels. If the channels are
statistically independent, as can usually be arranged, the full likelihood function is given by
the product over all of the channels,

20



Kyle Cranmer (NYU)

Center for 
Cosmology and 
Particle Physics

CERN School HEP, Romania, Sept. 2011

Median & bands from asymptotics
Get Median and bands in seconds, not days!

150

0 5 10 15 20
10!4

10!2

100

10!3

10!1

q
µ

median[q
µ
 | 0]

Figure 9: The distributions
f(qµ|0) (red) and f(qµ|µ) (blue)
from both the asymptotic formulae
and Monte Carlo histograms (see
text).

The vertical line in Fig. 9 gives the median value of qµ assuming a strength parameter
µ

′ = 0. The area to the right of this line under the curve of f(qµ|µ) gives the p-value of
the hypothesized µ, as shown shaded in green. The upper limit on µ at a confidence level
CL = 1−α is the value of µ for which the p-value is pµ = α. Figure 9 shows the distributions
for the value of µ that gave pµ = 0.05, corresponding to the 95% CL upper limit.

In addition to reporting the median limit, one would like to know how much it would vary
for given statistical fluctuations in the data. This is illustrated in Fig. 10, which shows the
same distributions as in Figure 9, but here the vertical line indicates the 15.87% quantile of the
distribution f(qµ|0), corresponding to having µ̂ fluctuate downward one standard deviation
below its median.
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Figure 10: The distributions
f(qµ|0) (red) and f(qµ|µ) (blue) as
in Fig. 9 and the 15.87% quantile of
f(qµ|0) (see text).

By simulating the experiment many times with Monte Carlo, we can obtain a histogram
of the upper limits on µ at 95% CL, as shown in Fig. 11. The ±1σ (green) and ±2σ (yellow)
error bands are obtained from the MC experiments. The vertical lines indicate the error
bands as estimated directly (without Monte Carlo) using Eqs. (88) and (89). As can be seen
from the plot, the agreement between the formulae and MC predictions is excellent.

Figures 9 through 11 correspond to finding upper limit on µ for a specific value of the peak
position (mass). In a search for a signal of unknown mass, the procedure would be repeated
for all masses (in practice in small steps). Figure 12 shows the median upper limit at 95% CL
as a function of mass. The median (central blue line) and error bands (±1σ in green, ±2σ in
yellow) are obtained using Eqs. (88) and (89). The points and connecting curve correspond
to the upper limit from a single arbitrary Monte Carlo data set, generated according to the
background-only hypothesis. As can be seen, most of the plots lie as expected within the
±1σ error band.
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Figure 11: Distribution of the
upper limit on µ at 95% CL, as-
suming data corresponding to the
background-only hypothesis (see
text).
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Figure 12: The median (central
blue line) and error bands (±1σ in
green, ±2σ in yellow) for the 95%
CL upper limit on the strength pa-
rameter µ (see text).

6 Implementation in RooStats

Many of the results presented above are implemented or are being implemented in the
RooStats framework [15], which is a C++ class library based on the ROOT [16] and RooFit [17]
packages. The tools in RooStats can be used to represent arbitrary probability density func-
tions that inherit from RooAbsPdf, the abstract interfaces for probability density functions
provided by RooFit.

The framework provides an interface with minimization packages such as Minuit [18].
This allows one to obtain the estimators required in the the profile likelihood ratio: µ̂,

θ̂, and ˆ̂
θ. The Asimov dataset defined in Eq. (24) can be determined for a probability

density function by specifying the ExpectedData() command argument in a call to the
generateBinned method. The Asimov data together with the standard HESSE covariance
matrix provided by Minuit makes it is possible to determine the Fisher information matrix
shown in Eq. (28), and thus obtain the related quantities such as the variance of µ̂ and the
noncentrality parameter Λ, which enter into the formulae for a number of the distributions
of the test statistics presented above.

The distributions of the various test statistics and the related formulae for p-values, sensi-
tivities and confidence intervals as given in Sections 2, 3 and 4 are being incorporated as well.
RooStats currently includes the test statistics tµ, t̃µ, q0, and q,qµ, and q̃µ as concrete imple-
mentations of the TestStatistic interface. Together with the Asimov data, this provides
the ability to calculate the alternative estimate, σA, for the variance of µ̂ shown in Eq. (30).
The noncentral chi-square distribution is being incorporated into both RooStats and ROOT’s
mathematics libraries for more general use. The various transformations of the noncentral
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Feldman-Cousins with and without constraint
Wilks’s theorem gives a short-cut for the Monte Carlo procedure used to  find 
threshold on test statistic ⇒ MINOS is asymptotic approximation of Feldman-Cousins

‣ With a physical constraint (µ>0) the confidence band changes
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In many analyses, the contribution of the signal process to the mean number of events is

assumed to be non-negative. This condition effectively implies that any physical estimator

for µ must be non-negative. Even if we regard this to be the case, however, it is convenient

to define an effective estimator µ̂ as the value of µ that maximizes the likelihood, even this

gives µ̂ < 0 (but providing that the Poisson mean values, µsi+ bi, remain nonnegative). This

will allow us in Sec. 3.1 to model µ̂ as a Gaussian distributed variable, and in this way we can

determine the distributions of the test statistics that we consider. Therefore in the following

we will always regard µ̂ as an effective estimator which is allowed to take on negative values.

2.1 Test statistic tµ = −2 lnλ(µ)

From the definition of λ(µ) in Eq. (7), one can see that 0 ≤ λ ≤ 1, with λ near 1 implying good

agreement between the data and the hypothesized value of µ. Equivalently it is convenient

to use the statistic

tµ = −2 lnλ(µ) (8)

as the basis of a statistical test. Higher values of tµ thus correspond to increasing incompat-

ibility between the data and µ.

We may define a test of a hypothesized value of µ by using the statistic tµ directly

as measure of discrepancy between the data and the hypothesis, with higher values of tµ
correspond to increasing disagreement. To quantify the level of disagreement we compute

the p-value,

pµ =

� ∞

tµ,obs

f(tµ|µ) dtµ , (9)

where tµ,obs is the value of the statistic tµ observed from the data and f(tµ|µ) denotes the

pdf of tµ under the assumption of the signal strength µ. Useful approximations for this and

other related pdfs are given in Sec. 3.3. The relation between the p-value and the observed

tµ and also with the significance Z are illustrated in Fig. 1.

(a) (b)

Figure 1: (a) Illustration of the relation between the p-value obtained from an observed value of

the test statistic tµ. (b) The standard normal distribution ϕ(x) = (1/
√
2π) exp(−x2/2) showing the

relation between the significance Z and the p-value.

When using the statistic tµ, a data set may result in a low p-value in two distinct ways:

the estimated signal strength µ̂ may be found greater or less than the hypothesized value µ.
As a result, the set of µ values that are rejected because their p-values are found below a

specified threshold α may lie to either side of those values not rejected, i.e., one may obtain

a two-sided confidence interval for µ.

5

2.2 Test statistic t̃µ for µ ≥ 0

Often one assumes that the presence of a new signal can only increase the mean event rate
beyond what is expected from background alone. That is, the signal process necessarily has
µ ≥ 0, and to take this into account we define an alternative test statistic below called t̃µ.

Even for when considering models for which µ ≥ 0, however, we will not restrict the
effective estimator µ̂ to be positive, and if the data fluctuate low relative to the expected
background one can find µ̂ < 0. By defining µ̂ in this way we will see in Sec. 3.1 that its
sampling distribution can be approximated by a Gaussian, which in turn allows one to obtain
simple approximations for the pdfs of the test statistics considered.

For a model where µ ≥ 0, if one finds data such that µ̂ < 0, then the best level of
agreement between the data and any physical value of µ occurs for µ = 0. We therefore
define

λ̃(µ) =






L(µ,ˆ̂θ(µ))

L(µ̂,θ̂)
µ̂ ≥ 0,

L(µ,ˆ̂θ(µ))

L(0,ˆ̂θ(0))
µ̂ < 0 .

(10)

Here ˆ̂θ(0) and ˆ̂θ(µ) refer to the conditional ML estimators of θ given a strength parameter
of 0 or µ, respectively.

The variable λ̃(µ) can be used instead of λ(µ) in Eq. (8) to obtain the corresponding test
statistic, which we denote t̃µ. That is,

t̃µ = −2 ln λ̃(µ) =






−2 ln L(µ,ˆ̂θ(µ))

L(0,ˆ̂θ(0))
µ̂ < 0 ,

−2 ln L(µ,ˆ̂θ(µ))

L(µ̂,θ̂)
µ̂ ≥ 0 .

(11)

As was done with the statistic tµ, one can quantify the level of disagreement between the
data and the hypothesized value of µ with the p-value, just as in Eq. (9). An approximate
formula for the distribution of t̃µ needed to do this is given in Sec. 3.4.

Also similar to the case of tµ, values of µ both above and below µ̂ may be excluded by a
given data set, i.e., one may obtain either a one-sided or two-sided confidence interval for µ.
For the case of no nuisance parameters, the test variable t̃µ is equivalent to what is used in
constructing confidence intervals according to the procedure of Feldman and Cousins [8].

2.3 Test statistic q0 for discovery of a positive signal

An important special case of the statistic t̃µ described above is used to test µ = 0 in a class
of model where we assume µ ≥ 0. Rejecting the µ = 0 hypothesis effectively leads to the
discovery of a new signal. For this important case we use the special notation q0 = t̃0. Using
the definition (11) with µ = 0 one finds

q0 =






−2 lnλ(0) µ̂ ≥ 0 ,

0 µ̂ < 0 ,
(12)

where λ(0) is the profile likelihood ratio for µ = 0 as defined in Eq. (7).
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For 1-sided upper-limit the threshold on the test statistic is different

‣ and with physical boundaries, it is again more complicated
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We may contrast this to the statistic t0, i.e., Eq. (8), used to test µ = 0. In this case
one may reject the µ = 0 hypothesis for either an upward or downward fluctuation of the
data. This is appropriate if the presence of a new phenomenon could lead to an increase or
decrease in the number of events found. In an experiment looking for neutrino oscillations,
for example, the signal hypothesis may predict a greater or lower event rate than the no-
oscillation hypothesis.

When using q0, however, we consider the data to show lack of agreement with the
background-only hypothesis only if µ̂ > 0. That is, a value of µ̂ much below zero may
indeed constitute evidence against the background-only model, but this type of discrepancy
does not show that the data contain signal events, but rather points to some other systematic
error. For the present discussion, however, we assume that the systematic uncertainties are
dealt with by the nuisance parameters θ.

If the data fluctuate such that one finds fewer events than even predicted by background
processes alone, then µ̂ < 0 and one has q0 = 0. As the event yield increases above the
expected background, i.e., for increasing µ̂, one finds increasingly large values of q0, corre-
sponding to an increasing level of incompatibility between the data and the µ = 0 hypothesis.

To quantify the level of disagreement between the data and the hypothesis of µ = 0 using
the observed value of q0 we compute the p-value in the same manner as done with tµ, namely,

p0 =
� ∞

q0,obs
f(q0|0) dq0 . (13)

Here f(q0|0) denotes the pdf of the statistic q0 under assumption of the background-only
(µ = 0) hypothesis. An approximation for this and other related pdfs are given in Sec. 3.5.

2.4 Test statistic qµ for upper limits

For purposes of establishing an upper limit on the strength parameter µ, we consider two
closely related test statistics. First, we may define

qµ =

�
−2 lnλ(µ) µ̂ ≤ µ ,

0 µ̂ > µ ,
(14)

where λ(µ) is the profile likelihood ratio as defined in Eq. (7). The reason for setting qµ = 0
for µ̂ > µ is that when setting an upper limit, one would not regard data with µ̂ > µ as
representing less compatibility with µ than the data obtained, and therefore this is not taken
as part of the rejection region of the test. From the definition of the test statistic one sees that
higher values of qµ represent greater incompatibility between the data and the hypothesized
value of µ.

One should note that q0 is not simply a special case of qµ with µ = 0, but rather has a
different definition (see Eqs. (12) and (14)). That is, q0 is zero if the data fluctuate downward
(µ̂ < 0), but qµ is zero if the data fluctuate upward (µ̂ > µ). With that caveat in mind, we will
often refer in the following to qµ with the idea that this means either q0 or qµ as appropriate
to the context.

As with the case of discovery, one quantifies the level of agreement between the data and
hypothesized µ with p-value. For, e.g., an observed value qµ,obs, one has
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pµ =

� ∞

qµ,obs

f(qµ|µ) dqµ , (15)

which can be expressed as a significance using Eq. (1). Here f(qµ|µ) is the pdf of qµ assuming

the hypothesis µ. In Sec. 3.6 we provide useful approximations for this and other related

pdfs.

2.5 Alternative test statistic q̃µ for upper limits

For the case where one considers models for which µ ≥ 0, the variable λ̃(µ) can be used

instead of λ(µ) in Eq. (14) to obtain the corresponding test statistic, which we denote q̃µ.
That is,

q̃µ =





−2 ln λ̃(µ) µ̂ ≤ µ

0 µ̂ > µ
=






−2 ln
L(µ,ˆ̂θ(µ))

L(0,ˆ̂θ(0))
µ̂ < 0

−2 ln
L(µ,ˆ̂θ(µ))

L(µ̂,θ̂)
0 ≤ µ̂ ≤ µ

0 µ̂ > µ .

(16)

We give an approximation for the pdf f(q̃µ|µ�
) in Sec. 3.7.

In numerical examples we have found that the difference between the tests based on qµ
(Eq. (14)) and q̃µ usually to be negligible, but use of qµ leads to important simplifications.

Furthermore, in the context of the approximation used in Sec. 3, the two statistics are equiv-

alent. That is, assuming the approximations below, qµ can be expressed as a monotonic

function of q̃µ and thus they lead to the same results.

3 Approximate sampling distributions

In order to find the p-value of a hypothesis using Eqs. (13) or (15) we require the sampling

distribution for the test statistic being used. In the case of discovery we are testing the

background-only hypothesis (µ = 0) and therefore we need f(q0|0), where q0 is defined by

Eq. (12). When testing a nonzero value of µ for purposes of finding an upper limit we need

the distribution f(qµ|µ) where qµ is defined by Eq. (14), or alternatively we require the pdf

of the corresponding statistic q̃µ as defined by Eq. (16). In this notation the subscript of q
refers to the hypothesis being tested, and the second argument in f(qµ|µ) gives the value of

µ assumed in the distribution of the data.

We also need the distribution f(qµ|µ�
) with µ �= µ�

to find what significance to expect and

how this is distributed if the data correspond to a strength parameter different from the one

being tested. For example, it is useful to characterize the sensitivity of a planned experiment

by quoting the median significance, assuming data distributed according to a specified signal

model, with which one would expect to exclude the background-only hypothesis. For this one

would need f(q0|µ�
), usually with µ�

= 1. From this one can find the median q0, and thus the

median discovery significance. When considering upper limits, one would usually quote the

value of µ for which the median p-value is equal to 0.05, as this gives the median upper limit

on µ at 95% confidence level. In this case one would need f(qµ|0) (or alternatively f(q̃µ|0)).
In Sec. 3.1 we present an approximation for the profile likelihood ratio, valid in the large

sample limit. This allows one to obtain approximations for all of the required distributions,

which are given in Sections 3.3 through 3.6 The approximations become exact in the large
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The Non-Central Chi-Square
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Let Xi be k independent, normally distributed 
random variables with means µi and 
variances . Then the random variable

is distributed according to the noncentral chi-
square distribution. It has two parameters: k 
which specifies the number of degrees of 
freedom (i.e. the number of Xi), and ! which is 
related to the mean of the random variables 
Xi by:

! is sometime called the noncentrality 
parameter. Note that some references define 
! in other ways, such as half of the above 
sum, or its square root.

Wald’s theorem allows one to find the distribution of -2log'(µ) when µ 
is not true -- the result is a non-central chi-square distribution
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The main results
The Model is just a binned version of the 
marked Poisson we have considered

The “Asimov Data” is an artificial dataset 
where the “observations” are set equal to 
the expected values given the parameters 
of the model

We proved that fits to the Asimov data can 
be used to get the non-centrality parameter 
needed for Wald’s theorem
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The results of Wilks and Wald generalize to more than one parameter of interest. If
the parameters of interest can be explicitly identified with a subset of the parameters θr =
(θ1, . . . , θr), then the distribution of −2 ln λ(θr) follows a noncentral chi-square distribution
for r-degrees of freedom with noncentrality parameter

Λr =
r

∑

i,j = 1
(θi − θ′i) Ṽ

−1
ij (θj − θ′j) , (21)

where Ṽ

−1
ij is the inverse of the submatrix one obtains from restricting the full covariance

matrix to the parameters of interest. The full covariance matrix is given from inverting
Eq. (18), and we show an efficient way to calculate it in Sec. 3.2.

3.2 The Asimov data set and the variance of µ̂

Some of the formulae given require the standard deviation σ of µ̂, which is assumed to follow
a Gaussian distribution with a mean of µ′. Below we show two ways of estimating σ, both of
which are closely related to a special, artificial data set that we call the “Asimov data set”.

We define the Asimov data set such that when one uses it to evaluate the estimators for
all parameters, one obtains the true parameter values. Consider the likelihood function for
the generic analysis given by Eq. (6). To simplify the notation in this section we define

νi = µ

′
si + bi . (22)

Further let θ0 = µ represent the strength parameter, so that here θi can stand for any of the
parameters. The ML estimators for the parameters can be found by setting the derivatives
of lnL with respect to all of the parameters equal to zero:

∂ lnL

∂θj
=

N
∑

i = 1

(

ni

νi
− 1

)

∂νi
∂θj

+
M
∑

i = 1

(

mi

ui
− 1

)

∂ui
∂θj

= 0 . (23)

This condition holds if the Asimov data, ni,A and mi,A , are equal to their expectation values:

ni,A = E[ni] = νi = µ

′
si(θ) + bi(θ) , (24)

mi,A = E[mi] = ui(θ) . (25)

Here the parameter values represent those implied by the assumed distribution of the data.
In practice, these are the values that would be estimated from the Monte Carlo model using
a very large data sample.

We can use the Asimov data set to evaluate the “Asimov likelihood” LA and the cor-
responding profile likelihood ratio λA . The use of non-integer values for the data is not a
problem as the factorial terms in the Poisson likelihood represent constants that cancel when
forming the likelihood ratio, and thus can be dropped. One finds

λA (µ) =
LA (µ,

ˆ̂
θ)

LA (µ̂, θ̂)
=

LA (µ,
ˆ̂
θ)

LA(µ′
,θ)

, (26)
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data can be represented as one or more histograms. Using the method in an unbinned analysis
is a straightforward extension.

Suppose for each event in the signal sample one measures a variable x and uses these
values to construct a histogram n = (n1, . . . , nN ). The expectation value of ni can be written

E[ni] = µsi + bi , (2)

where the mean number of entries in the ith bin from signal and background are

si = stot

∫

bi n i
fs(x;θs) dx , (3)

bi = btot

∫

bi n i
fb(x;θb) dx . (4)

Here the parameter µ determines the strength of the signal process, with µ = 0 corresponding
to the background-only hypothesis and µ = 1 being the nominal signal hypothesis. The
functions fs(x;θs) and fb(x;θb) are the probability density functions (pdfs) of the variable
x for signal and background events, and θs and θb represent parameters that characterize
the shapes of pdfs. The quantities stot and btot are the total mean numbers of signal and
background events, and the integrals in (3) and (4) represent the probabilities for an event to
be found in bin i. Below we will use θ = (θs,θb, btot) to denote all of the nuisance parameters.
The signal normalization stot is not, however, an adjustable parameter but rather is fixed to
the value predicted by the nominal signal model.

In addition to the measured histogram n one often makes further subsidiary measurements
that help constrain the nuisance parameters. For example, one may select a control sample
where one expects mainly background events and from them construct a histogram of some
chosen kinematic variable. This then gives a set of values m = (m1, . . . ,mM ) for the number
of entries in each of the M bins. The expectation value of mi can be written

E[mi] = ui(θ) , (5)

where the ui are calculable quantities depending on the parameters θ. One often constructs
this measurement so as to provide information on the background normalization parameter
btot and also possibly on the signal and background shape parameters.

The likelihood function is the product of Poisson probabilities for all bins:

L(µ,θ) =
N
∏

j = 1

(µsj + bj)nj

nj!
e

−(µsj + bj )
M
∏

k = 1

u

mk
k

mk!
e

−uk
. (6)

To test a hypothesized value of µ we consider the profile likelihood ratio

λ(µ) =
L(µ, ˆ̂θ)

L(µ̂, θ̂)
. (7)

Here ˆ̂
θ in the numerator denotes the value of θ that maximizes L for the specified µ, i.e.,

it is the conditional maximum-likelihood (ML) estimator of θ (and thus is a function of µ).
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where the final equality above exploits the fact that the estimators for the parameters are
equal to their hypothesized values when the likelihood is evaluated with the Asimov data set.

A standard way to find σ is by estimating the matrix of second derivatives of the log-
likelihood function (cf. Eq. (18)) to obtain the inverse covariance matrix V

−1, inverting to
find V , and then extracting the element V00 corresponding to the variance of µ̂. The second
derivative of lnL is

∂2 lnL

∂θj∂θk
=

N
∑

i = 1

[

(

ni

νi
− 1

)

∂2νi
∂θj∂θk

−
∂νi
∂θj

∂νi
∂θk

ni

ν2
i

]

+
M
∑

i = 1

[

(

mi

ui
− 1

)

∂2
ui

∂θj∂θk
−

∂ui
∂θj

∂ui
∂θk

mi

u

2
i

]

. (27)

From (27) one sees that the second derivative of lnL is linear in the data values ni and mi.
Thus its expectation value is found simply by evaluating with the expectation values of the
data, which is the same as the Asimov data. One can therefore obtain the inverse covariance
matrix from

V

−1
jk = −E

[

∂2 lnL

∂θj∂θk

]

= −
∂2 lnLA

∂θj∂θk
=

N
∑

i = 1

∂νi
∂θj

∂νi
∂θk

1

νi
+

M
∑

i = 1

∂ui
∂θj

∂ui
∂θk

1

ui
. (28)

In practice one could, for example, evaluate the the derivatives of lnLA numerically, use this
to find the inverse covariance matrix, and then invert and extract the variance of µ̂. One can
see directly from Eq. (28) that this variance depends on the parameter values assumed for
the Asimov data set, in particular on the assumed strength parameter µ

′, which enters via
Eq. (22).

Another method for estimating σ (denoted σA in this section to distinguish it from the
approach above based on the second derivatives of lnL) is to find find the value that is neces-
sary to recover the known properties of −λA (µ). Because the Asimov data set corresponding
to a strength µ

′ gives µ̂ = µ

′, from Eq. (17) one finds

− 2 lnλA (µ) ≈
(µ− µ

′)2

σ2 = Λ . (29)

That is, from the Asimov data set one obtains an estimate of the noncentrality parameter Λ
that characterizes the distribution f(qµ|µ′). Equivalently, one can use Eq. (29) to obtain the
variance σ2 which characterizes the distribution of µ̂, namely,

σ2
A =

(µ− µ

′)2

qµ,A
, (30)

where qµ,A = −2 lnλA (µ). For the important case where one wants to find the median
exclusion significance for the hypothesis µ assuming that there is no signal, then one has
µ

′ = 0 and therefore

σ2
A =

µ

2

qµ,A
, (31)
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How well does it work?
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How well does it work
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Some non-trivial tests: boundaries

157

!"

#$%&'()*+,$(&'-&($.(*-/01&$&23(.$+04,*'(

56()$7*%( 8-2%9(&:'(;+$.2,'(<2=',2:$$>(2%(?'*+3:'-(.$+(@'7(;:/-23-(A(B*%..(!CDC

?*0'(0'--*9'(.$+(&'-&(E*-'>($%(! 6

! *%>(! 92F'(-202,*+(&'-&-(&$(
&:'('G&'%&(&:*&(*-/01&$&23

.$+04,*'(*+'(F*,2>6

H

H



Kyle Cranmer (NYU)

Center for 
Cosmology and 
Particle Physics

CERN School HEP, Romania, Sept. 2011

Some non-trivial tests: boundaries
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Figure 7: The distribution of the test statistic q1 for µ̂ ≤ 1 under the s+b hypothesis (for H→ !!), for mH = 120
GeV with an integrated luminosity of (a) 2 fb−1 and (b) 10 fb−1. A "21 distribution is superimposed.

3.2 H →W+W−

The H→W+W− search is divided into two topologies, production of a Higgs with no jets (H+0 j) and
with two additional jets (H+ 2 j), using in both cases the decay mode H→WW → e!µ! . The present
study does not yet consider the final states e!e! or µ!µ! , nor those with hadronic W decays. Future
inclusion of these channels is expected to improve the search sensitivity particularly for the high Higgs
mass region. The search is described in detail in Ref. [5].

3.2.1 H+0 j

The analysis of the H + 0 j channel uses a two dimensional maximum-likelihood fit of the transverse
mass and the transverse momentum of the WW system in two bins of the dilepton opening angle in the
transverse plane. The fit includes control samples to measure the backgrounds from tt and Z→ "" .
The QCD WW background requires particular attention. Its distributions of Higgs-candidate trans-

verse mass and pT are described with functions containing several adjustable (nuisance) parameters, and
several others whose values are determined from a full Monte Carlo simulation and thereafter treated as
fixed. The distribution of the test statistic q0 under the background-only (µ = 0) hypothesis is shown in
Fig. 8(a) for mH = 150 GeV for an integrated luminosity of 10 fb−1. The same fixed QCD WW shape
parameters are used both to generate the data and for calculating the likelihood ratio. A 12#21 distribution
is superimposed, showing the level of agreement of the asymptotic approximation.
For this channel, further investigation of the systematic uncertainties was carried out. For the fixed

shape parameters related to pT and transverse mass distributions for the QCD WW background, the val-
ues used to generate the data were varied relative to what was used when determining the likelihood ratio.
This was done in a manner that minimized the sensitivity of the resulting q0 distribution to variations in
other fixed parameters such as the QCD Q2 scale. The resulting distributions of q0 are thus no longer
expected to follow the 12#21 form, as can be seen in Fig. 8(b).
Because the chi-square approximation is not valid in this case, the p-values are calculated using the

q0 distribution obtained directly from the Monte Carlo. An exponential is fitted to the tail region in
order to extrapolate to large q0 values, and the median value of q0 under the hypothesis of signal plus
background is determined using the same variation of the background parameters. It was found that the
median p-value of the background-only hypothesis, with the median computed under assumption of the
s+b hypothesis, is very similar to the original case where the QCD shape parameters are not varied and
the 12#21 distribution is used.
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We now can describe
effect of the boundary on
the distribution of the
test statistic.

The p-value of the hypothesized µ is

pµ = 1− F (qµ|µ) = 1− Φ
(√

qµ

)

(59)

and therefore the corresponding significance is

Zµ = Φ−1(1 − pµ) =
√
qµ . (60)

As with the statistic tµ above, if the p-value is found below a specified threshold α (often
one takes α = 0.05), then the value of µ is said to be excluded at a confidence level (CL) of
1− α. The upper limit on µ is the largest µ with pµ ≤ α. Here this can be obtained simply
by setting pµ = α and solving for µ. Using Eqs. (54) and (59) one finds

µu p = µ̂+ σΦ−1(1− α) . (61)

For example, α = 0.05 gives Φ−1(1−α) = 1.64. Also as noted above, σ depends in general on
the hypothesized µ. Thus in practice one may find the upper limit numerically as the value
of µ for which pµ = α.

3.7 Distribution of q̃µ (upper limits)

Using the alternative statistic q̃µ defined by Eq. (16) and assuming the Wald approximation
we find

q̃µ =



















µ2

σ2 − 2µµ̂
σ2 µ̂ < 0 ,

(µ−µ̂)2
σ2 0 ≤ µ̂ ≤ µ ,

0 µ̂ > µ .

(62)

The pdf f(q̃µ|µ′) is found to be

f(q̃µ|µ′) = Φ
(

µ

′ − µ

σ

)

δ(q̃µ)

+















1
2

1√
2π

1√
q̃µ

exp
[

− 1
2

(

√

q̃µ − µ−µ′

σ

)2
]

0 < q̃µ ≤ µ

2
/σ2

,

1√
2π(2µ/σ)

exp
[

− 1
2

(q̃µ−(µ2−2µµ′ )/σ2 )2
(2µ/σ)2

]

q̃µ > µ

2
/σ2

.

(63)

The special case µ = µ

′ is therefore

f(q̃µ|µ) =
1

2
δ(q̃µ) +















1
2

1√
2π

1√
q̃µ
e

−q̃µ/2 0 < q̃µ ≤ µ

2
/σ2

,

1√
2π(2µ/σ)

exp
[

− 1
2

(q̃µ +µ2/σ2 )2
(2µ/σ)2

]

q̃µ > µ

2
/σ2

.

(64)

The corresponding cumulative distribution is
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The problem with p-values
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N events

P(
 N

 |
 s

+
b
 )

b-only s+b
b-only p-valueobs

more discrepant

The decision to reject the null hypothesis is based on the probability for data 
you didn’t get to agree less well with the hypothesis... 

‣ doesn’t sound very convincing when you put it that way.  Other criticisms:
● test statistic is “arbitrary” (not really, it is designed to be powerful against 

an alternative)
● what is the ensemble? Related to conditioning 
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The Likelihood Principle

159

Likelihood Principle

• As noted above, in both Bayesian methods and likelihood-ratio 
based methods, the probability (density) for obtaining the data at 
hand is used (via the likelihood function), but probabilities for 
obtaining other data are not used!

• In contrast, in typical frequentist calculations (e.g., a p-value which 
is the probability of obtaining a value as extreme or more extreme 
than that observed), one uses probabilities of data not seen.

• This difference is captured by the Likelihood Principle*: If two 
experiments yield likelihood functions which are proportional, then experiments yield likelihood functions which are proportional, then 
Your inferences from the two experiments should be identical.

• L.P. is built in to Bayesian inference (except e.g., when Jeffreys 
prior leads to violation).  

• L.P. is violated by p-values and confidence intervals.

• Although practical experience indicates that the L.P. may be too 
restrictive, it is useful to keep in mind.  When frequentist results 
“make no sense” or “are unphysical”, in my experience the 
underlying reason can be traced to a bad violation of the L.P.

*There are various versions of the L.P.,  strong and weak forms, etc.
Bob Cousins, CMS, 2008 46
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Likelihood-based methods settle between two conflicting desires:
‣ We want to obey the likelihood principle because it implies a lot of nice 

things and sounds pretty attractive
‣ We want nice frequentist properties (and the only way we know to 

incorporate those properties “by construction” will violate the likelihood 
principle)

Goal of Likelihood-based Methods

160

x

θ

θ0

θ1

θ2

f(x|θ)

The asymptotic results give us 
a a way to approximately cover 
while simultaneously obeying 
the likelihood principle and 
NOT using a prior
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Bayesian methods
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Bob’s Example
A b-tagging algorithm gives a curve like this

One wants to decide where to cut and to optimize analysis
‣ For some point on the curve you have:

● P(btag| b-jet),               i.e., efficiency for tagging b’s 
● P(btag| not a b-jet),      i.e., efficiency for background 
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The Factory 10
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Figure 5:

Code Example 6:
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Now that you know:
‣ P(btag| b-jet),              i.e., efficiency for tagging b’s 
‣ P(btag| not a b-jet),      i.e., efficiency for background 

Question: Given a selection of jets with btags, what fraction of them are 
b-jets?  

‣ I.e., what is P(b-jet | btag) ? 

Answer: Cannot be determined from the given information! 
‣ Need to know P(b-jet): fraction of all jets that are b-jets.  
‣ Then Bayes’ Theorem inverts the conditionality: 

● P(b-jet | btag) ∝P(btag|b-jet) P(b-jet) 

Note, this use of Bayes’ theorem is fine for Frequentist
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Bob’s example of Bayes’ theorem
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An analysis is developed to search for the Higgs boson
‣ background expectation is 0.1 events

● you know P(N | no Higgs)
‣ signal expectation is 10 events

● you know P(N | Higgs )

Question: one observes 8 events,  what is P(Higgs | N=8) ? 

Answer: Cannot be determined from the given information! 
‣ Need in addition: P(Higgs)

● no ensemble!  no frequentist notion of P(Higgs)
● prior based on degree-of-belief would work, but it is subjective.  

This is why some people object to Bayesian statistics for 
particle physics

164

An different example of Bayes’ theorem
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Markov Chain Monte Carlo
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Markov Chain Monte Carlo (MCMC) is a nice technique which will produce a 
sampling of a parameter space which is proportional to a posterior
‣ it works well in high dimensional problems
‣ Metropolis-Hastings Algorithm: generates a sequence of points 

● Given the likelihood function         & prior        , the posterior is 
proportional to 

● propose a point     to be added to the chain according to a proposal 
density            that depends only on current point 

● if posterior is higher at    than at   , then add new point to chain
● else: add     to the chain with probability 

● (appending original point      with complementary probability) 
‣ RooStats works with any         ,         
‣ can use any RooFit PDF as proposal function   

‣ Helper for forming custom multivariate Gaussian, Bank of Clues, etc.
‣ New Sequential Proposal function similar to BAT

L(�α) P (�α)
L(�α) · P (�α)

ρ =
L(�α�) · P (�α�)
L(�α) · P (�α)

· Q(�α|�α�)
Q(�α�|�α)

{�α(t)}

�α�

Q(�α�|�α) �α
�α� �α

L(�α) P (�α)
Q(�α�|�α)

�α�

�α
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Examples from Higgs Combination
RooStats MCMCCalculator tool used for the ATLAS and CMS Higgs 
combinations.  Combinations include ~25-50 channels and >100 
parameters
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nuisance parameters vs. Param of interest
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Physicist Sir Harold Jeffreys had the clever 
idea that we can “objectively” create a flat 
prior uniform in a metric determined by 

Adds “minimal information” in a precise 
sense, and results in:

The Jeffreys Prior

167

It has the key feature that it is invariant under reparameterization of the 
parameter vector . In particular, for an alternate parameterization      we 
can derive

I(θ)

Unfortunately, the Jeffreys 
prior in multiple 
dimensions causes some 
problems, and in certain 
circumstances gives 
undesirable answers.
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Reference Priors

Refrerence priors are 
another type of “objective” 
priors, that try to save 
Jeffreys’ basic idea.
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http://physics.rockefeller.edu/luc/proceedings/phystat2005_refana.ps
See Luc Demortier’s PhyStat 2005 proceedings
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Jeffreys’s Prior
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  RooWorkspace w("w");
  w.factory("Uniform::u(x[0,1])");
  w.factory("mu[100,1,200]");
  w.factory("ExtendPdf::p(u,mu)");

  w.defineSet("poi","mu");
  w.defineSet("obs","x");
  //  w.defineSet("obs2","n");

  RooJeffreysPrior pi("jeffreys","jeffreys",*w.pdf("p"),*w.set("poi"),*w.set("obs"));

π(�θ) ∝
�
det I

�
�θ
�
. (I (θ))i,j = −E

�
∂2

∂θi ∂θj
ln f(X; θ)

���� θ
�
.

where the final equality above exploits the fact that the estimators for the parameters are
equal to their hypothesized values when the likelihood is evaluated with the Asimov data set.

A standard way to find σ is by estimating the matrix of second derivatives of the log-
likelihood function (cf. Eq. (18)) to obtain the inverse covariance matrix V −1, inverting to
find V , and then extracting the element V00 corresponding to the variance of µ̂. The second
derivative of lnL is

∂2 lnL

∂θj∂θk
=

N
∑

i=1

[

(

ni

νi
− 1

)

∂2νi
∂θj∂θk

−
∂νi
∂θj

∂νi
∂θk

ni

ν2i

]

+
M
∑

i=1

[

(

mi

ui
− 1

)

∂2ui
∂θj∂θk

−
∂ui
∂θj

∂ui
∂θk

mi

u2i

]

. (27)

From (27) one sees that the second derivative of lnL is linear in the data values ni and mi.
Thus its expectation value is found simply by evaluating with the expectation values of the
data, which is the same as the Asimov data. One can therefore obtain the inverse covariance
matrix from

V −1
jk = −E

[

∂2 lnL

∂θj∂θk

]

= −
∂2 lnLA

∂θj∂θk
=

N
∑

i=1

∂νi
∂θj

∂νi
∂θk

1

νi
+

M
∑

i=1

∂ui
∂θj

∂ui
∂θk

1

ui
. (28)

In practice one could, for example, evaluate the the derivatives of lnLA numerically, use this
to find the inverse covariance matrix, and then invert and extract the variance of µ̂. One can
see directly from Eq. (28) that this variance depends on the parameter values assumed for
the Asimov data set, in particular on the assumed strength parameter µ′, which enters via
Eq. (22).

Another method for estimating σ (denoted σA in this section to distinguish it from the
approach above based on the second derivatives of lnL) is to find find the value that is neces-
sary to recover the known properties of −λA(µ). Because the Asimov data set corresponding
to a strength µ′ gives µ̂ = µ′, from Eq. (17) one finds

− 2 lnλA(µ) ≈
(µ− µ′)2

σ2
= Λ . (29)

That is, from the Asimov data set one obtains an estimate of the noncentrality parameter Λ
that characterizes the distribution f(qµ|µ′). Equivalently, one can use Eq. (29) to obtain the
variance σ2 which characterizes the distribution of µ̂, namely,

σ2
A =

(µ− µ′)2

qµ,A
, (30)

where qµ,A = −2 lnλA(µ). For the important case where one wants to find the median
exclusion significance for the hypothesis µ assuming that there is no signal, then one has
µ′ = 0 and therefore

σ2
A =

µ2

qµ,A
, (31)
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Jeffreys’s Prior is an “objective” prior based on formal rules
(it is related to the Fisher Information and the Cramér-Rao bound]

Eilam, Glen, Ofer, and I showed in arXiv:1007.1727 that the Asimov 
data provides a fast, convenient way to calculate the Fisher Information

Use this as basis to calculate 
Jeffreys’s prior for an arbitrary PDF! Validate on a Poisson

Analytic
RooStats numerical
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Jeffreys’s Prior
Validate Jeffreys’s Prior on a Gaussian µ, !, and (µ,!)
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 RooWorkspace w("w");
  w.factory("Gaussian::g(x[0,-20,20],mu[0,-5,5],sigma[1,0,10])");
  w.factory("n[10,.1,200]");
  w.factory("ExtendPdf::p(g,n)");
  w.var("n")->setConstant();

  w.var("sigma")->setConstant();
  w.defineSet("poi","mu");
  w.defineSet("obs","x");
  RooJeffreysPrior pi("jeffreys","jeffreys",*w.pdf("p"),*w.set("poi"),*w.set("obs"));
  

Analytic
RooStats numerical

Analytic
RooStats numerical
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The Bayesian Solution
Bayesian solution generically have a prior for the parameters of 
interest as well as nuisance parameters
‣ 2010 recommendations largely echoes the PDG’s stance.

Recommendation: When performing a Bayesian analysis one should separate 
the objective likelihood function from the prior distributions to the extent possible. 

Recommendation: When performing a Bayesian analysis one should investigate 
the sensitivity of the result to the choice of priors. 

Warning: Flat priors in high dimensions can lead to unexpected and/or misleading 
results. 

Recommendation: When performing a Bayesian analysis for a single parameter 
of interest, one should attempt to include Jeffreys's prior in the sensitivity analysis.
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Words of wisdom on Bayesian methods
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a frequentist context (eg. Eq. 3). Priors for the parameters of interest can have a larger
influence on the final inference, thus, in order to compare with frequentist methods it is
important to separate these two components as much as possible.

In order to understand the sensitivity to the choice of priors, it is recommended to repeat
the analysis with several choices of priors. As Michael Goldstein said “Sensitivity Analysis is
at the heart of scientific Bayesianism.”

It is common practice in HEP to use flat priors. This follows partially from the intuitive
notion that flat priors are non-informative. One should absolutely not be fooled by this
intuitive picture, as flat priors are not invariant to reparametrizing the model, and thus are
informative. In many dimensions, uniform priors are especially dangerous, as volume effects
push probability away from the origin.

The conceptual goal of choosing a prior in an objective way that adds as little information
to the resulting inference as possible has been developed significantly by the statistical com-
munity. This was first done by Jeffreys (a physicist and statistician), and is a recommended
prior to try in one-dimensional problems (note, it can be improper). In high-dimensional
problems Jeffrey’s rule has problems. The state-of-the art “objective” priors (eg. priors cho-
sen by formal rules) are the reference priors of Bernardo and collaborators. While this is an
area for our field to investigate, no general tools are available.

It is also worth noting that a Bayesian method has frequentist properties (and vice versa).
So even though a method is Bayesian, one can still quantify its coverage or calibrate it in a
frequentist way.

To support the points raised above, here are some quotes from professional statisticians
(taken from selected PhyStat talks and selections from Bob Cousins lectures):

• “Perhaps the most important general lesson is that the facile use of what appear to be
uninformative priors is a dangerous practice in high dimensions.” – Brad Effron

• “meaningful prior specification of beliefs in probabilistic form over very large possibility
spaces is very difficult and may lead to a lot of arbitrariness in the specification.” –
Michael Goldstein

• “Sensitivity Analysis is at the heart of scientific Bayesianism.” – Michael Goldstein

• “Non-subjective Bayesian analysis is just a part – an important part, I believe of a
healthy sensitivity analysis to the prior choice...” J.M. Bernardo

• “Objective Bayesian analysis is the best frequentist tool around” – Jim Berger

Recommendation: When performing a Bayesian analysis one should separate the objective
likelihood function from the prior distributions to the extent possible.

Recommendation: When performing a Bayesian analysis one should investigate the sensi-
tivity of the result to the choice of priors.

Warning: Flat priors in high dimensions can lead to unexpected and/or misleading results.

Recommendation: When performing a Bayesian analysis for a single parameter of interest,
one should attempt to include Jeffreys’s prior in the sensitivity analysis.

In addition to Bayesian credible intervals, one can use Bayes factors as an alternative to
p-values for hypothesis tests. Bayes factors have not been used extensively in HEP, but it is
an area worth further investigation.

5
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Coverage & Likelihood principle
Methods based on the Neyman-Construction always cover.... by 
construction.

‣ this approach violates the likelihood principle
Bayesian methods obey likelihood principle, but do not 
necessarily cover
‣ that doesn’t mean Bayesians shouldn’t care about coverage

Coverage can be thought of as a calibration of our statistical 
apparatus. [explain under-/over-coverage]

Bayesian and Frequentist results answer different questions
‣ major differences between them may indicate severe coverage 
problems and/or violations of the likelihood principle
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Jim Berger:

Bob Cousins, CosmoStats 2009 31

-Jim Berger
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Joke
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“Bayesians address the question everyone is 
interested in, by using assumptions no-one 
believes”

“Frequentists use impeccable logic to deal 
with an issue of no interest to anyone”

-L. Lyons
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!e End
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