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Hypothesis testing
One of the most common uses of statistics in particle physics is 
Hypothesis Testing (e.g. for discovery of a new particle)
‣ assume one has pdf for data under two hypotheses:

● Null-Hypothesis, H0:  eg. background-only
● Alternate-Hypothesis H1: eg. signal-plus-background

‣ one makes a measurement and then needs to decide whether 
to reject or accept H0
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Hypothesis testing

Before we can make much progress with statistics, we need 
to decide what it is that we want to do.
‣ first let us define a few terms:

● Rate of Type I error 
● Rate of Type II 
● Power = 

Treat the two hypotheses asymmetrically
‣ the Null is special.  

● Fix rate of Type I error, call it “the size of the test”

Now one can state “a well-defined goal”
‣Maximize power for a fixed rate of Type I error
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Hypothesis testing

The idea of a “    “ discovery criteria for particle physics is really a 
conventional way to specify the size of the test
‣ usually     corresponds to 

● eg. a very small chance we reject the standard model
In the simple case of number counting it is obvious what region is 
sensitive to the presence of a new signal
‣ but in higher dimensions it is not so easy
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6 Glen Cowan Multivariate Statistical Methods in Particle Physics

Finding an optimal decision boundary

Maybe select events with “cuts”:
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Or maybe use some other type of decision boundary:

Goal of multivariate analysis is to do this in an “optimal” way.
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The Neyman-Pearson Lemma
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The Neyman & Pearson’s Theory

In 1928-1938 Neyman & Pearson developed a theory in which one
must consider competing Hypotheses:

- the Null Hypothesis H0 (background only)

- the Alternate Hypothesis H1 (signal-plus-background)

Given some probability that we wrongly reject the Null Hypothesis

α = P (x /∈ W |H0)

Find the region W such that we minimize the probability of wrongly
accepting the H0 (when H1 is true)

β = P (x ∈ W |H1)

April 11, 2005

EFI High Energy Physics Seminar

Modern Data Analysis Techniques

for High Energy Physics (page 6)

Kyle Cranmer

Brookhaven National Laboratory

(Convention: if data falls in W then we accept H0)
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The region     that minimizes the probability of wrongly 
accepting     is just a contour of the Likelihood Ratio

Any other region of the same size will have less power 

The likelihood ratio is an example of a Test Statistic, eg. 
a real-valued function that summarizes the data in a way 
relevant to the hypotheses that are being tested
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The Neyman-Pearson Lemma

P (x|H1)
P (x|H0)

> kα

W
H0

Kyle Cranmer (NYU)

Center for 
Cosmology and 
Particle Physics

CERN School HEP, Romania, Sept. 2011

A short proof of Neyman-Pearson

Consider the contour of the likelihood ratio that has size a given 
size (eg. probability under H0 is 1-   )
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A short proof of Neyman-Pearson
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Now consider a variation on the contour that has the same 
size
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A short proof of Neyman-Pearson
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P ( |H0) = P ( |H0)

Now consider a variation on the contour that has the same size 
(eg. same probability under H0)
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A short proof of Neyman-Pearson
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Because the new area is outside the contour of the likelihood 
ratio, we have an inequality

P (x|H1)
P (x|H0)

< kα

P ( |H0) = P ( |H0)

P ( |H1) < P ( |H0)kα
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A short proof of Neyman-Pearson
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P (x|H1)
P (x|H0)

< kα
P (x|H1)
P (x|H0)

> kα

P ( |H0) = P ( |H0)

P ( |H1) < P ( |H0) P ( |H1) > P ( |H0)kα kα

And for the region we lost, we also have an inequality
Together they give...
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A short proof of Neyman-Pearson
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The new region region has less power.

P (x|H1)
P (x|H0)

< kα
P (x|H1)
P (x|H0)

> kα

P ( |H0) = P ( |H0)

P ( |H1) < P ( |H1)

P ( |H1) < P ( |H0) P ( |H1) > P ( |H0)kα kα
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2 discriminating variables
Often one uses the output of a neural network or multivariate algorithm in 
place of a true likelihood ratio.
‣ That’s fine, but what do you do with it?
‣ If you have a fixed cut for all events, this is what you are doing:
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q = lnQ = −s + ln
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Experiments vs. Events

Ideally, you want to cut on 
the likelihood ratio for your 
experiment
‣ equivalent to a sum of 

log likelihood ratios
Easy to see that includes 
experiments where one 
event had a high LR and the 
other one was relatively 
small
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LEP Higgs
A simple likelihood
ratio with no free 
parameters
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The Test Statistic and its distribution
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Consider this schematic diagram

The “test statistic” is a single number that quantifies the entire experiment, it 
could just be number of events observed, but often its more sophisticated, like 
a likelihood ratio.  What test statistic do we choose?
And how do we build the distribution?  Usually “toy Monte Carlo”, but what 
about the uncertainties... what do we do with the nuisance parameters?
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A better separation between the signal and backgrounds is obtained at the higher masses. It can also be

seen that for the signal, the transverse mass distribution peaks near the Higgs boson mass.
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Figure 3: The transverse mass as defined in Equation 1 for signal and background events in the l
+

l
−νν̄

analysis after all cuts for the Higgs boson masses mH = 200, 300, 400, 500 and 600 GeV.

The sensitivity associated with this channel is extracted by fitting the signal shape into the total cross-

section. The sensitivity as a function of the Higgs boson mass for 1fb
−1

at 7 TeV can be seen in Fig. 4

(Left).

3.2 H → ZZ → l
+
l
−
bb̄

Candidate H → ZZ → l
+

l
−

bb̄ events are selected starting from events containing a reconstructed primary

vertex consisting of at least 3 tracks which lie within ±30 cm of the nominal interaction point along the

beam direction. There must be at least two same-flavour leptons, with the invariant mass of the lepton

pair forming the Z candidate lying within the range 79 < mll < 103 GeV.

The missing transverse momentum, E
miss

T
, must be less than 30 GeV, and there should be exactly

9

The Marked Poisson model
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Recall our marked Poisson model
‣ observables: n events each 

with some value of 
discriminating variable m

‣ auxiliary measurements: ai

‣ parameters: !

Useful to separate parameters into !=(",#)
‣ parameters of interest ": cross sections, masses, coupling constants, ...
‣ nuisance parameters #: reconstruction efficiencies, energy scales, ...

‣ note: not all of the nuisance parameters need to have constraint terms

P (m,a|α) = Pois(n|s(α) + b(α))
n�

j

s(α)fs(mj |α) + b(α)fb(mj |α)

s(α) + b(α)
×

�

i∈syst

G(ai|αi,σi)
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From our general model

Consider a simple number counting model with s(!)! s, b(!)! b, and 
replace the constraint G(a|",#)! Pois(noff |$b) with $ known.

We could simply use non as our test statistic, but to calculate the p-value 
we need to know distribution of non.

Observations:
‣ The distribution of non explicitly depends on both s and b.  
‣ The distribution of noff is independent of s
‣ If $b is very different from noff, then the data are not consistent with the 

model parameters.  However, the p-value derived from non is not small.

Our number counting example
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ATLAS Statistics Forum

DRAFT
7 May, 2010

Comments and Recommendations for Statistical Techniques

We review a collection of statistical tests used for a prototype problem, characterize their

generalizations, and provide comments on these generalizations. Where possible, concrete

recommendations are made to aid in future comparisons and combinations with ATLAS and

CMS results.

1 Preliminaries

A simple ‘prototype problem’ has been considered as useful simplification of a common HEP

situation and its coverage properties have been studied in Ref. [1] and generalized by Ref. [2].

The problem consists of a number counting analysis, where one observes non events and

expects s + b events, b is uncertain, and one either wishes to perform a significance test

against the null hypothesis s = 0 or create a confidence interval on s. Here s is considered the

parameter of interest and b is referred to as a nuisance parameter (and should be generalized

accordingly in what follows). In the setup, the background rate b is uncertain, but can

be constrained by an auxiliary or sideband measurement where one expects τb events and

measures noff events. This simple situation (often referred to as the ‘on/off’ problem) can be

expressed by the following probability density function:

P (non, noff |s, b) = Pois(non|s + b) Pois(noff |τb). (1)

Note that in this situation the sideband measurement is also modeled as a Poisson process

and the expected number of counts due to background events can be related to the main

measurement by a perfectly known ratio τ . In many cases a more accurate relation between

the sideband measurement noff and the unknown background rate b may be a Gaussian with

either an absolute or relative uncertainty ∆b. These cases were also considered in Refs. [1, 2]

and are referred to as the ‘Gaussian mean problem’.

While the prototype problem is a simplification, it has been an instructive example. The

first, and perhaps, most important lesson is that the uncertainty on the background rate b
has been cast as a well-defined statistical uncertainty instead of a vaguely-defined systematic

uncertainty. To make this point more clearly, consider that it is common practice in HEP to

describe the problem as

P (non|s) =

�
db Pois(non|s + b)π(b), (2)

where π(b) is a distribution (usually Gaussian) for the uncertain parameter b, which is

then marginalized (ie. ‘smeared’, ‘randomized’, or ‘integrated out’ when creating pseudo-

experiments). But what is the nature of π(b)? The important fact which often evades serious

consideration is that π(b) is a Bayesian prior, which may or may-not be well-justified. It

often is justified by some previous measurements either based on Monte Carlo, sidebands, or

control samples. However, even in those cases one does not escape an underlying Bayesian

prior for b. The point here is not about the use of Bayesian inference, but about the clear ac-

counting of our knowledge and facilitating the ability to perform alternative statistical tests.

1

P (m,a|α) = Pois(n|s(α) + b(α))
n�

j

s(α)fs(mj |α) + b(α)fb(mj |α)

s(α) + b(α)
×

�

i∈syst

G(ai|αi,σi)

p =
∞�

non=nobs

Pois(non|s+ b)× Pois(noff |τb)� �� �
constant
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Goal of Bayesian-frequentist hybrid solutions is to provide a frequentist 
treatment of the main measurement, while eliminating nuisance 
parameters (deal with systematics) with an intuitive Bayesian technique.

Tracing back the origin of %(b)
‣ clearly state prior        ; identify control samples (sidebands) and use:

In a purely Frequentist approach we must need a test statistic that 
depends on both non and noff and we must consider both random (eg. when 
generating toy Monte Carlo)

If we were actually in a case described by the ‘on/off’ problem, then it would be better to
think of π(b) as the posterior resulting from the sideband measurement

π(b) = P (b|noff) =
P (noff |b)η(b)�
dbP (noff |b)η(b)

. (3)

By doing this it is clear that the term P (noff |b) is an objective probability density that can
be used in a frequentist context and that η(b) is the original Bayesian prior assigned to b.

Recommendation: Where possible, one should express uncertainty on a parameter as
statistical (eg. random) process (ie. Pois(noff |τb) in Eq. 1).

Recommendation: When using Bayesian techniques, one should explicitly express and
separate the prior from the objective part of the probability density function (as in Eq. 3).

Now let us consider some specific methods for addressing the on/off problem and their
generalizations.

2 The frequentist solution: ZBi

The goal for a frequentist solution to this problem is based on the notion of coverage (or
Type I error). One considers there to be some unknown true values for the parameters s, b
and attempts to construct a statistical test that will not incorrectly reject the true values
above some specified rate α.

A frequentist solution to the on/off problem, referred to as ZBi in Refs. [1, 2], is based on
re-writing Eq. 1 into a different form and using the standard frequentist binomial parameter
test, which dates back to the first construction of confidence intervals for a binomial parameter
by Clopper and Pearson in 1934 [3]. This does not lead to an obvious generalization for more
complex problems.

The general solution to this problem, which provides coverage “by construction” is the
Neyman Construction. However, the Neyman Construction is not uniquely determined; one
must also specify:

• the test statistic T (non, noff ; s, b), which depends on data and parameters

• a well-defined ensemble that defines the sampling distribution of T

• the limits of integration for the sampling distribution of T

• parameter points to scan (including the values of any nuisance parameters)

• how the final confidence intervals in the parameter of interest are established

The Feldman-Cousins technique is a well-specified Neyman Construction when there are
no nuisance parameters [6]: the test statistic is the likelihood ratio T (non; s) = L(s)/L(sbest),
the limits of integration are one-sided, there is no special conditioning done to the ensemble,
and there are no nuisance parameters to complicate the scanning of the parameter points or
the construction of the final intervals.

The original Feldman-Cousins paper did not specify a technique for dealing with nuisance
parameters, but several generalization have been proposed. The bulk of the variations come
from the choice of the test statistic to use.
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1

With nuisance parameters: Hybrid Solutions
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control samples. However, even in those cases one does not escape an underlying Bayesian
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Does it matter?
This on/off problem has been studied 
extensively.
‣ instead of arguing about the merits of 

various methods, just go and check their 
rate of Type I error

‣ Results indicated large discrepancy in 
“claimed” significance and “true” 
significance for various methods

‣ eg. 5# is really ~4# for some points
So, yes, it does matter.  

90
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an approximation of the full construction, that does
not necessarily cover. To the extent that the use of
the profile likelihood ratio as a test statistic provides
similar tests, the profile construction has good cover-
age properties. The main motivation for the profile
construction is that it scales well with the number of
nuisance parameters and that the “clipping” is built
in (only one value of the nuisance parameters is con-
sidered).

It appears that the chooz experiment actually
performed both the full construction (called “FC cor-
rect syst.”) and the profile construction (called “FC
profile”) in order to compare with the strong confi-
dence technique.36

Another perceived problem with the full con-
struction is that bad over-coverage can result from
the projection onto the parameters of interest. It
should be made very clear that the coverage proba-
bility is a function of both the parameters of interest
and the nuisance parameters. If the data are con-
sistent with the null hypothesis for any value of the
nuisance parameters, then one should probably not
reject it. This argument is stronger for nuisance pa-
rameters directly related to the background hypoth-
esis, and less strong for those that account for instru-
mentation effects. In fact, there is a family of meth-
ods that lie between the full construction and the
profile construction. Perhaps we should pursue a hy-
brid approach in which the construction is formed for
those parameters directly linked to the background
hypothesis, the additional nuisance parameters take
on their profile values, and the final interval is pro-
jected onto the parameters of interest.

5 Results with the Canonical Example

Consider the case btrue = 100, τ = 1 (i.e. 10% sys-
tematic uncertainty). For each of the methods we
find the critical boundary, xcrit(y), which is neces-
sary to reject the null hypothesis µ0 = 0 at 5σ when
y is measured in the auxiliary measurement. Figure 7
shows the contours of LG, from Eq. 15, and the criti-
cal boundary for several methods. The far left curve
shows the simple s/

√
b curve neglecting systematics.

The far right curve shows a critical region with the
correct coverage. With the exception of the profile
likelihood, λP , all of the other methods lie between
these two curves (ie. all of them under-cover). The
rate of Type I error for these methods was evaluated
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Figure 7. A comparison of the various methods critical bound-
ary xcrit(y) (see text). The concentric ovals represent con-
tours of LG from Eq. 15.

for LG and LP and presented in Table 2.
The result of the full Neyman construction and

the profile construction are not presented. The full
Neyman construction covers by construction, and
it was previously demonstrated for a similar case
(b = 100, τ = 4) that the profile construction gives
similar results.22 Furthermore, if the λP were used
as an ordering rule in the full construction, the criti-
cal region for b = 100 would be identical to the curve
labeled “λP profile” (since λP actually covers).

It should be noted that if one knows the likeli-
hood is given by LG(x, y|µ, b), then one should use
the corresponding profile likelihood ratio, λG(x, y|µ),
for the hypothesis test. However, knowledge of the
correct likelihood is not always available (Sinervo’s
Class II systematic), so it is informative to check
the coverage of tests based on both λG(x, y|µ) and
λP (x, y|µ) by generating Monte Carlo according to
LG(x, y|µ, b) and LP (x, y|µ, b). In a similar way, this
decoupling of true likelihood and the assumed likeli-
hood (used to find the critical region) can break the
“guaranteed” coverage of the Neyman construction.

It is quite significant that the ZN method under-
covers, since it is so commonly used in HEP. The de-
gree to which the method under-covers depends on
the truncation of the Gaussian posterior P (b|y). Lin-
nemann’s table also shows significant under-coverage
(over estimate of the significance Z). In order to ob-
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expressed by the following probability density function:

P (non, noff |s, b) = Pois(non|s + b) Pois(noff |τb). (1)
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and the expected number of counts due to background events can be related to the main

measurement by a perfectly known ratio τ . In many cases a more accurate relation between

the sideband measurement noff and the unknown background rate b may be a Gaussian with

either an absolute or relative uncertainty ∆b. These cases were also considered in Refs. [1, 2]

and are referred to as the ‘Gaussian mean problem’.

While the prototype problem is a simplification, it has been an instructive example. The

first, and perhaps, most important lesson is that the uncertainty on the background rate b
has been cast as a well-defined statistical uncertainty instead of a vaguely-defined systematic

uncertainty. To make this point more clearly, consider that it is common practice in HEP to

describe the problem as
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then marginalized (ie. ‘smeared’, ‘randomized’, or ‘integrated out’ when creating pseudo-

experiments). But what is the nature of π(b)? The important fact which often evades serious

consideration is that π(b) is a Bayesian prior, which may or may-not be well-justified. It

often is justified by some previous measurements either based on Monte Carlo, sidebands, or

control samples. However, even in those cases one does not escape an underlying Bayesian

prior for b. The point here is not about the use of Bayesian inference, but about the clear ac-

counting of our knowledge and facilitating the ability to perform alternative statistical tests.
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The Profile Likelihood Ratio
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ν̂

Consider our general model with a single parameter of interest µ 
‣ let µ=0 be no signal, µ=1 nominal signal

In the LEP approach the likelihood ratio is equivalent to:

‣ but this variable is sensitive to uncertainty on & and makes no use of 
auxiliary measurements a

Alternatively, one can define profile likelihood ratio

‣ where                  is best fit with µ fixed  (the constrained maximum 
likelihood estimator, depends on data)

‣ and    and    are best fit with both left floating (unconstrained)
‣ Tevatron used QTev = !(µ=1)/!(µ=0) as generalization of QLEP

QLEP =
P (m|µ = 1, ν)

P (m|µ = 0, ν)

λ(µ) =
P (m,a|µ, ˆ̂ν(µ;m,a) )

P (m,a|µ̂, ν̂)

µ̂

ˆ̂ν(µ;m,a)
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An example
Essentially, you need to fit your model to the data twice:
once with everything floating, and once with signal fixed to 0
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where the ai are the parameters used to parameterize the fake-tau background and ! represents all nui-680

sance parameters of the model: "H ,mZ,"Z,rQCD,a1,a2,a3. When using the alternate parameterization681

of the signal, the exact form of Equation 14 is modified to coincide with parameters of that model.682

Figure 14 shows the fit to the signal candidates for a mH = 120 GeV Higg with (a,c) and without683

(b,d) the signal contribution. It can be seen that the background shapes and normalizations are trying to684

accommodate the excess near m## = 120 GeV, but the control samples are constraining the variation.685

Table 13 shows the significance calculated from the profile likelihood ratio for the ll-channel, the lh-686

channel, and the combined fit for various Higgs boson masses.687
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Figure 14: Example fits to a data sample with the signal-plus-background (a,c) and background only

(b,d) models for the lh- and ll-channels at mH = 120 GeV with 30 fb−1 of data. Not shown are the

control samples that were fit simultaneously to constrain the background shape. These samples do not

include pileup.

27

λ(µ = 0) =
P (m,a|µ = 0, ˆ̂ν(µ = 0;m,a) )

P (m,a|µ̂, ν̂)

P (m,a|µ = 0, ˆ̂ν(µ = 0;m,a) )P (m,a|µ̂, ν̂)



Kyle Cranmer (NYU)

Center for 
Cosmology and 
Particle Physics

CERN School HEP, Romania, Sept. 2011

Properties of the Profile Likelihood Ratio
After a close look at the profile likelihood ratio

one can see the function is independent of true values of &
‣ though its distribution might depend indirectly

Wilks’s theorem states that under certain conditions the 
distribution of -2 ln ! ("="0) given that the true value of " is "0 
converges to a chi-square distribution
‣ more on this tomorrow, but the important points are:
‣ “asymptotic distribution” is known and it is independent of &

● more complicated if parameters have boundaries (eg. µ$ 0)

Thus, we can calculate the p-value for the background-only 
hypothesis without having to generate Toy Monte Carlo!
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λ(µ) =
P (m,a|µ, ˆ̂ν(µ;m,a) )

P (m,a|µ̂, ν̂)
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Toy Monte Carlo
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Explicitly build distribution by generating “toys” / pseudo experiments assuming a 
specific value of µ and !.  

‣ randomize both main measurement m and auxiliary measurements a
‣ fit the model twice for the numerator and denominator of profile likelihood ratio
‣ evaluate -2ln "(µ) and add to histogram

Choice of µ is straight forward: typically µ=0 and µ=1, but choice of ! is less clear
‣ more on this tomorrow

This can be very time consuming.  Plots below use millions of toy pseudo-
experiments on a model with ~50 parameters.
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What makes a statistical method
To describe a statistical method, you should clearly specify

‣ choice of a test statistic
● simple likelihood ratio (LEP)
● ratio of profiled likelihoods (Tevatron) 
● profile likelihood ratio (LHC)

‣ how you build the distribution of the test statistic
● toy MC randomizing nuisance parameters according to 

• aka Bayes-frequentist hybrid, prior-predictive, Cousins-Highland
● toy MC with nuisance parameters fixed (Neyman Construction)
● assuming asymptotic distribution (Wilks and Wald, more tomorrow)

‣ what condition you use for limit or discovery
● more on this tomorrow
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λ(µ) = Ls+b(µ, ˆ̂ν)/Ls+b(µ̂, ν̂)

QLEP = Ls+b(µ = 1)/Lb(µ = 0)

QTEV = Ls+b(µ = 1, ˆ̂ν)/Lb(µ = 0, ˆ̂ν�)

π(ν)
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Experimentalist Justification
So far this looks a bit like magic.  How can you claim that you 
incorporated your systematic just by fitting the best value of your 
uncertain parameters and making a ratio?
It won’t unless the the parametrization is sufficiently flexible.
So check by varying the settings of your simulation, and see if the 
profile likelihood ratio is still distributed as a chi-square

96

log Likelihood Ratio
0 2 4 6 8 10 12 14 16 18 20

P
ro

b
a
b

il
it

y

-6
10

-5
10

-410

-3
10

-210

-110
Nominal (Fast Sim)

miss

T
Smeared P

 scale 12Q

 scale 2
2

Q

 scale 3
2

Q
 scale 4

2
Q

tLeading-order t

bLeading-order WWb
Full Simulation

-1
 L dt=10 fb

ATLAS

Here it is pretty stable, but 
it’s not perfect (and this is 
a log plot, so it hides some 
pretty big discrepancies)

For the distribution to be 
independent of the nuisance 
parameters your 
parametrization must be 
sufficiently flexible.
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A very important point
If we keep pushing this point to the extreme, the physics problem 
goes beyond what we can handle practically
The p-values are usually predicated on the assumption that the true 
distribution is in the family of functions being considered
‣ eg. we have sufficiently flexible models of signal & background to 

incorporate all systematic effects
‣ but we don’t believe we simulate everything perfectly
‣ ..and when we parametrize our models usually we have further 

approximated our simulation.
● nature -> simulation -> parametrization

At some point these approaches are limited by honest systematics 
uncertainties (not statistical ones).  Statistics can only help us so much 
after this point. Now we must be physicists!
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