Beyond the Standard Model

Lecture 3

Bogdan Dobrescu (Fermilab)

Outline:

- Electroweak symmetry breaking (Lecture 1)
- Quark and lepton masses; vectorlike quarks (Lecture 2)
- New gauge bosons (Lecture 3)
- WIMPs and cascade decays (Lecture 4)
- How to search for new phenomena (Lecture 5)

September 2011 - European School of HEP

Anomaly cancellation

Gauge symmetries may be broken by quantum effects.

Cure: sums over fermion triangle diagrams must vanish.

Standard Model: anomalies cancel within each generation

$$[SU(3)]^2U(1)$$
: $2(1/3) + (-4/3) + (2/3) = 0$

$$[SU(2)]^2U(1)$$
: $3(1/3) + (-1) = 0$

$$[U(1)]^3$$
: $3[2(1/3)^3 + (-4/3)^3 + (2/3)^3] + 2(-1)^3 + (-2)^3 = 0$

$$U(1)$$
-gravitational: $2(1/3) + (-4/3) + (2/3) = 0$

Standard Model

Fermion and scalar gauge charges:

	$SU(3)_C$	$SU(2)_W$	$U(1)_Y$
quark doublet: $q_L^i = (u_L^i,d_L^i)$	3	2	1/3
right-handed up-type quark: u_R^i	3	1	4/3
right-handed down-type quark: d_R^i	3	1	-2/3
lepton doublet: $l_L^i = (u_L^i,e_L^i)$	1	2	-1
right-handed charged lepton": e_R^i	1	1	-2
Higgs doublet: H	1	2	+1

i=1,2,3 labels the fermion generations.

Z' bosons

Z' = any new electrically-neutral gauge boson (spin 1).

Consider an $SU(3)_C \times SU(2)_W \times U(1)_Y \times U(1)_z$ gauge symmetry spontaneously broken down to $SU(3)_C \times U(1)_{\rm em}$ by the VEVs of a doublet H and an $SU(2)_W$ -singlet scalar, φ .

The mass terms for the three electrically-neutral gauge bosons, $W^{3\mu}$, B^{μ}_{Y} and B^{μ}_{z} , arise from the kinetic terms for the scalars:

$$egin{aligned} rac{v_H^2}{8} \left(g W^{3 \mu} - g_Y B_Y^{\mu} - z_H g_z B_z^{\mu}
ight) \left(g W_{\mu}^3 - g_Y B_{Y \mu} - z_H g_z B_{z \mu}
ight) \ + rac{v_{arphi}^2}{8} g_z^2 B_z^{\mu} B_{z \mu} \end{aligned}$$

Mass-square matrix for B_{V}^{μ} , $W^{3\mu}$ and B_{z}^{μ} :

$$\mathcal{M}^2 = rac{g^2 v_H^2}{4 \cos^2 heta_w} \, U^\dagger \left(egin{array}{ccc} 0 & 0 & 0 & 0 \ 0 & 1 & -z_H t_z \cos heta_w \ 0 & -z_H t_z \cos heta_w & (r+z_H^2) \, t_z^2 \cos^2 heta_w \end{array}
ight) U$$

where $t_z \equiv g_z/g$, $an heta_w = g_Y/g$, $r = v_{arphi}^2/v_H^2$

$$U = \left(\begin{array}{ccc} \cos\theta_w & \sin\theta_w & 0 \\ -\sin\theta_w & \cos\theta_w & 0 \\ 0 & 0 & 1 \end{array} \right) \qquad \begin{array}{cccc} \text{relates} & \text{the neutral gauge} \\ \text{bosons to the physical states} \\ \text{in the case } z_H = 0. \end{array}$$

The mixing angle $-\pi/4 \le \theta' \le \pi/4$ satisfies

$$\tan 2\theta' = \frac{2z_H t_z \cos \theta_w}{(r + z_H^2)t_z^2 \cos^2 \theta_w - 1}$$

The Z and Z' masses are given by

$$M_{Z,Z'} = \frac{gv_H}{2\cos\theta_w} \left[\frac{1}{2} \left((r+z_H^2) t_z^2 \cos^2\theta_w + 1 \right) \mp \frac{z_H t_z \cos\theta_w}{\sin 2\theta'} \right]^{1/2}$$

Z' is heavier than Z when $(r+z_H^2)t_z^2\cos^2\theta_w>1.$

The relation between the neutral gauge bosons and the corresponding mass eigenstates can be found by diagonalizing \mathcal{M}^2 :

$$\begin{pmatrix} B_Y^{\mu} \\ W^{3\mu} \\ B_z^{\mu} \end{pmatrix} = \begin{pmatrix} \cos\theta_w & -\sin\theta_w \cos\theta' & \sin\theta_w \sin\theta' \\ \sin\theta_w & \cos\theta_w \cos\theta' & -\cos\theta_w \sin\theta' \\ 0 & \sin\theta' & \cos\theta' \end{pmatrix} \begin{pmatrix} A^{\mu} \\ Z^{\mu} \\ Z'^{\mu} \end{pmatrix}$$

 A^{μ} is the photon field Z^{μ} is the field associated with the observed Z boson Z'^{μ} is a neutral gauge boson, not discovered yet.

The mass and couplings of the Z' boson are described by the following parameters:

- ullet gauge coupling g_z
- ullet VEV v_{arphi}
- ullet $U(1)_z$ charge of the Higgs doublet, z_H
- ullet fermion charges under $U(1)_z$ constrained by anomaly cancellation conditions and requirement of fermion mass generation

Nonexotic Z'

Nonanomalous $U(1)_z$ gauge symmetry without new fermions charged under $SU(3)_C \times SU(2)_W \times U(1)_Y$

Allow an arbitrary number of ν_R 's

Assume: • generation-independent charges,

 quark and lepton masses from standard model Yukawa couplings

Gravitational- $U(1)_z$ and $[U(1)_z]^3$ anomaly cancellation conditions:

$$rac{1}{3}\sum_{k=1}^n z_k=-4z_q+z_u$$

$$\left(\sum_{k=1}^n z_k\right)^3 = 9\sum_{k=1}^n z_k^3$$

• For $n \leq 2$:

 $z_1 = -z_2 \Rightarrow z_u = 4z_q \Rightarrow ext{trivial or } Y ext{-sequential } U(1)_z ext{-charges}$

• For $n \geq 3$:

$$U(1)_{B-L}$$
 charges: $z_1 = z_2 = z_3 = -4z_q + z_u$

or
$$z_1 = z_2 = -(4/5)z_3 = -16z_q + 4z_u = -4$$

ν masses: three LH Majorana,

two dimension-7 and one dimension-12 Dirac operators, RH Majorana ops. of dimension ranging from 4 to 13

or ...

Fermion and scalar gauge charges:

	$SU(3)_C$	$SU(2)_W$	$U(1)_Y$	$U(1)_z$
q_L^i	3	2	1/3	z_q
u_R^i	3	1	4/3	z_u
d_R^i	3	1	-2/3	$2z_q-z_u$
l_L^i	1	2	-1	$-3z_q$
e_R^i	1	1	-2	$-2z_q-z_u$
$ u_R^k$, $k=1,,n$	1	1	0	z_k
H	1	2	+1	$-z_q + z_u$
arphi	1	1	0	1

$$[SU(3)_C]^2U(1)_z$$
 , $[SU(2)_W]^2U(1)_z$, $U(1)_Y[U(1)_z]^2$ and
$$[U(1)_Y]^2U(1)_z \mbox{ anomalies cancel}$$

LEP I requires $\theta' \lesssim 10^{-3} \Rightarrow M_{Z'} \gtrsim 2 \text{ TeV}$

Special case: $SU(3)_C \times SU(2)_W \times U(1)_Y \times U(1)_{B-L}$

$$z_q = z_u = z_d = -\frac{z_l}{3} = -\frac{z_e}{3} = -\frac{z_\nu}{3} \implies z_H = 0$$

No Z_{B-L} -Z mixing at tree level $(\theta' = 0)$!

Best bounds on z_lg_z come from limits on direct production at the LHC. Tevatron and LEP II.

Initial state radiation at LEP for a narrow Z_{B-L} resonance at $M_{Z'} < \sqrt{s}$:

$$\sigma\left(e^+e^-\!\!\to\gamma Z_{B-L}\right)\mathrm{Br}\left(Z_{B-L}\!\to\mu^+\mu^-\right)\approx\frac{3\alpha}{74}(z_lg_z)^2\frac{s^2+M_{Z'}^4}{s^2\left(s-M_{Z'}^2\right)}\ln\left(\frac{s}{m_e^2}\right)$$

Z' searches at the Tevatron

LEPII has run at $\sqrt{s} \approx 130, 136, 161, 172, 183, 189, 192 - 209$ GeV

For a Z_{B-L} with $M_{Z'}\sim 140$ GeV:

Number of $\mu^+\mu^-$ events at $\sqrt{s}\approx 161$ GeV due to Z_{B-L} :

$$N(Z_{B-L}) pprox 3 imes 10^4 (z_l g_z)^2$$

Main background: $e^+e^- \rightarrow \gamma^*\gamma, Z^*\gamma \rightarrow \mu^+\mu^-\gamma$ (~ 6.4 events in an energy bin of 5 GeV)

At the 95% confidence-level: $z_l g_z \lesssim 10^{-2}$

If $\sqrt{s}=M_{Z'}$: no need for initial state radiation. Strongest bound for $M_{Z'}\sim 189$ GeV: $z_lg_z<10^{-3}$

More general charges are allowed in the presence of new fermions:

	SU(3)	SU(2)	$U(1)_Y$	$U(1)_{B-xL}$	$U(1)_{q+xu}$	$U(1)_{10+xar{5}}$	$U(1)_{d-xu}$
q_L	3	2	1/3	1/3	1/3	1/3	0
u_R	3	1	4/3	1/3	x/3	-1/3	-x/3
d_R	3	1	-2/3	1/3	(2-x)/3	-x/3	1/3
l_L	1	2	-1	-x	-1	x/3	(-1+x)/3
e_R	1	1	-2	-x	-(2+x)/3	-1/3	x/3
$ u_R$	1	1	0	-1	(-4+x)/3	(-2+x)/3	-x/3
$ u_R'$	_	1	U	•	•	-1 - x/3	•
$\boldsymbol{\psi_L^l}$	1	2	-1	-1	•	-(1+x)/3	-2x/5
ψ_R^l	_	2	-1	-x	٠	2/3	(-1+x/5)/3
$oldsymbol{\psi_L^e}$	1	1	-2	-1	•	•	•
ψ_R^e	_	-	-2	-x	•	•	•
ψ_L^d	3	1	-2/3	•	•	-2/3	(1-4x/5)/3
ψ_R^d			-2/5	•	•	(1+x)/3	x/15

Homework 3.1:

Identify the couplings of the Z' arising from the $SO(10) \rightarrow SU(5)$ GUT breaking.

$$\sigma\left(pp o Z'X o l^+l^-X
ight) = rac{\pi}{48\,s}\left[c_u\,w_u'\left(rac{M_{Z'}^2}{s},M_{Z'}
ight) + c_d\,w_d'\left(rac{M_{Z'}^2}{s},M_{Z'}
ight)
ight]$$

 w_u^\prime and w_d^\prime contain all the information about QCD: values at the LHC are different than at the Tevatron

 \Rightarrow c_u and c_d can be determined independently if a Z' is observed at both the Tevatron and the LHC.

More information about Z^\prime couplings ($U(1)_z$ charges) can be extracted from angular distributions, etc.

Homework # 3.2:

What are the analytical formulas for $w'_{u,d}$ at LO in α_s ?

A user-friendly parametrization (hep-ph/0408098):

$$\sigma\left(par{p}
ightarrow Z'X
ightarrow l^+l^-X
ight)=rac{\pi}{48\,s}\left[c_u\,w_u\left(rac{M_{Z'}^2}{s},M_{Z'}
ight)+c_d\,w_d\left(rac{M_{Z'}^2}{s},M_{Z'}
ight)
ight]$$

All the information about charges is contained in:

$$c_{u,d}=g_z^2\,(z_q^2+z_{u,d}^2)\, {
m Br}(Z^\prime o l^+l^-)$$

"Gluon-prime": a heavy spin-1 color-octet particle

Gauge extension of QCD ("Topcolor", C. Hill 1991): $SU(3)_1 \times SU(3)_2 \rightarrow SU(3)_4$, spontaneously broken by the

 $SU(3)_1 \times SU(3)_2 o SU(3)_c$ spontaneously broken by the VEV of a scalar Σ transforming as $(3,\bar{3})$

 G_μ^a – massless gluon of QCD, with $g_s=rac{h_1h_2}{\sqrt{h_1^2+h_2^2}}$ $(h_{1,2}$ are the $SU(3)_{1,2}$ gauge couplings)

 $G_{\mu}^{\prime a}$ - massive "gluon-prime" ("topgluon" or "coloron" depending on its couplings to $t,\,b$)

Interactions: $g_s \mathbf{r} G_{\mu}^{\prime a} \bar{q} \gamma^{\mu} T^a q$ where $r = h_1/h_2$.

 G_n' production (in the narrow width approximation):

$$\sigma \Big(p ar p o G'_\mu X \Big) pprox rac{16 \pi^2 lpha_s r^2}{9 s} {\sum_q \int_{M^2/s}^1 rac{dx}{x} \left[q(x) \ q\left(rac{M^2}{x s}
ight) + \overline q(x) \ \overline q\left(rac{M^2}{x s}
ight)
ight]}$$

Limit on dijet resonance of ${\sim}\,300~{\rm GeV}\colon \ r^2{\cal B}(G'_\mu\to jj)<0.04$

Model "independent" search for Gluon-prime

work with KC Kong and Rakhi Mahbubani hep-ph/0709.2378

 G'_{μ} couplings to quarks are model dependent: if they are small enough, the mass limits from dijet resonance searches are evaded.

 G'_{μ} couplings to gluons are fixed by gauge invariance. G'_{μ} couples only in pairs to the gluon.

Pair production of heavy gluons from gluon-gluon initial state:

Dijet resonance searches at the LHC 7:

My wishes: extend the search to lower masses; show theory predictions for several choices of the coupling (r);

A pair of gluon-primes decays to 2 pairs of dijets (or $jjb\bar{b}$, $b\bar{b}b\bar{b}$).

Dominant background: QCD 4-jet production. Background simulated at tree level using MadGraph (checked with NJETS), taking the b-tagging efficiency to be 50%.

Production and decay of gluon-primes (G'_n) at the LHC:

The jets reconstruct (in pairs) resonances of equal mass. 103 Cutting around the resulting peak decreases the background 10² dramatically. 10¹ (qd) $\hat{\mathsf{x}}$ A spin-0 color octet (G_H) has similar properties, except it decays into the heaviest quarks. Signal: $p \bar{p} o G_H G_H o (b \bar{b}) (b \bar{b})$ LHC mass reach for a G'_{u} is $M_G \lesssim 1$ TeV with 1 fb $^{-1}$

Could there exist massless gauge bosons other than the photon?

But even when $z_q=z_u=z_d=z_l=z_e=0$

there can still be interactions of the standard model fields with the new massless gauge boson:

higher-dimensional operators!

 $U(1)_{B-L}$ is the only global symmetry of the standard model that can be gauged and unbroken.

 Z_{B-L} coupling to ordinary matter: $N_n g_z$ ($N_n = \text{number of neutrons}$)

To avoid deviations from Newton's law:

$$g_z \ll \frac{m_n}{M_{\rm Pl}} \sim 10^{-19}$$

Tests of the equivalence principle: $g_z < 10^{-24}$

 γ' couplings to leptons:

$$rac{1}{M^2}P_{\mu
u}~\left(ar{l}_L\sigma^{\mu
u}F_eHe_R+ ext{h.c.}
ight)$$

 F_e : 3 × 3 matrix in flavor space, dimensionless parameters

 γ' couplings to quarks: similar dimension-6 operators

In the mass eigenstate basis $F_e o F_e'=U_L^eF_eU_R^{e\dagger}$

 U_L^e and U_R^e are the unitary matrices that diagonalize the masses of the electrically-charged leptons.

ullet Interactions of the mass-eigenstate leptons with P^μ (chirality-flip operators $\sim v_h pprox 174$ GeV) :

$$\frac{v_h}{M^2} P_{\mu\nu} \, \overline{e'} \sigma^{\mu\nu} \left(\text{Re} F'_e + i \, \text{Im} F'_e \, \gamma_5 \right) e'$$

→ magnetic-like and electric-like dipole moments

Kinetic mixing of $U(1)_Y imes U(1)_z$ gauge bosons: $c_0 B^{\mu\nu} P_{\mu\nu}$ dimension-four operator!

Holdom 1985:

Kinetic terms can be diagonalized and canonically normalized by a SL(2,R) transformation.

Global SO(2) symmetry: linear combination of U(1) fields that couples to hypercharge is the real B^μ .

Orthogonal combination ("paraphoton" = γ') does not have any renormalizable couplings to standard model fields.

Conclusion:

kinetic mixing has no effect on the standard model fields other than a renormalization of the hypercharge gauge coupling. $\mathrm{Re}(F_e')^{ij}$, $\mathrm{Im}(F_e')^{ij}$ could have any value $\lesssim 4\pi$, but:

chirality-flip operators ightarrow probably $\left|F_e^{ij}
ight|\lesssim \left|\lambda_e^{ij}
ight|$

$$\implies \left| F_e^{\prime ij} \right| \lesssim \frac{m_{ au}}{v_h} \approx 10^{-2}$$

 $|F_e'^{11}|$ may naturally be below $m_e/v_h pprox 3 imes 10^{-6}$

Bosonic interactions of the paraphoton:

$$rac{1}{M^2} H^\dagger H \left(c_1 B_{\mu
u} + ilde{c}_1 \widetilde{B}_{\mu
u} + c_2 P_{\mu
u} + ilde{c}_2 \widetilde{P}_{\mu
u}
ight) P^{\mu
u}$$

- ullet renormalize the U(1) gauge couplings
- ullet include vertices with two U(1) gauge bosons and Higgs bosons.

These are all operators of $d \leq 6$ involving both γ' and SM fields

The strength of the γ' interaction with the electrons depends on

$$c_e \equiv rac{v_h}{m_e} \left| \left(C_e'
ight)_{11}
ight| \lesssim O(1)$$

Similar parameters defined for interactions such as $\mu^+\mu^-\gamma'$, $\mu^{\pm}e^{\mp}\gamma'$, ...

Various measurements set limits on these parameters.

Primordial Nucleosynthesis

Constraints on new particles with mass below several MeV.

Maximum number of new relativistic degrees of freedom:

$$\Delta g_*^{
m max} = rac{7}{8} \Delta N^{
m max} \; ; \;\;\; {
m at \; the } \; 2\sigma \; {
m level:} \;\; \Delta N_
u^{
m max} pprox 0.6$$

 γ' must go out of equilibrium at $T_P > T_{\rm BBN} \approx 1~{\rm MeV}$

Measurements of light element abundances set a limit on the effective mass scale:

$$M \gtrsim 1.5 \text{ TeV} \times \sqrt{c_{\mu}}$$

Spin-dependent long-range forces:

$$V(r) = -rac{c_e^2 m_e^2}{\pi M^4} rac{1}{r^3} [3(\sigma_1 \cdot r)(\sigma_2 \cdot r) - \sigma_1 \cdot \sigma_2]$$

Measurements of e - e long range forces impose that

$$\frac{M}{\sqrt{c_e}} \gtrsim 3~{
m GeV}$$

Star cooling

Effective coupling of γ' to electrons: $g_{\gamma'e}=rac{c_e}{M^2}m_e^2$

Red giant stars: γ' emission via Bremsstrahlung & Compton-like processes

$$g_{\gamma'e}^2/4\pi < 2.5 \times 10^{-27} \quad \Rightarrow \quad \frac{M}{\sqrt{c_e}} \gtrsim 3.2 \text{ TeV}$$

For supernovae: ν emission rate $\gg \gamma'$ emission rate \Rightarrow no useful bound on electron- γ' coupling (strong bound on quark- γ' couplings)

Flavor-changing neutral currents

Chirality-flip transition:
$$\Gamma\left(\mu \to e \gamma'
ight) = c_{e\mu}^2 rac{m_{\mu}^5}{8\pi M^4}$$

Standard model:
$$\Gamma\left(\mu \to e
u ar{
u}
ight) = \frac{m_{\mu}^5 G_F^2}{192 \pi^3} pprox 3.2 imes 10^{-10} \mathrm{eV}$$

$$\operatorname{Br}\left(\mu \to e \gamma'\right) < 3 \times 10^{-5} \qquad \Rightarrow \qquad \frac{M}{\sqrt{c_{e\mu}}} \gtrsim 15 \text{ TeV}$$

Conclusions so far

The LHC explores the TeV scale (= "terra incognita"). Many possibilities for what can be discovered:

- extended Higgs sectors (Lecture 1)
- Vectorlike fermions (Lecture 2)
- ullet New gauge bosons (Z', G', ...) (this lecture)

New very light (even massless) particles may also exist.

E.g., a γ' may couple to quarks and leptons via dimension-6 operators suppressed by the TeV scale!

Bogdan Dobrescu (Fermilab) - ESHEP 2011

An UV origin of the dimension-6 operators:

	l_L	e_R	N_L	N_R	H	ϕ
$SU(2)_W$	2	1	1	1	2	1
$U(1)_Y$	-1	-2	0	0	+1	-2
$U(1)_D$	0	0	+1	+1	0	-1

Yukawa interaction: $\lambda_{\phi}^{j} \overline{e}_{R}^{j} N_{L} \, \phi + \mathrm{h.c.}$

Contribution to the $iP_{\mu\nu}\overline{e}_R\gamma^{\mu}\partial^{\nu}e_R$ operator ($\sim P_{\mu\nu}\overline{l}_L\sigma^{\mu\nu}e_RH$):

$$\begin{cases} & & \\ & & \\ & & \\ & & \\ e_{R} & & \\ &$$