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1. Quantum fields and Symmetries.

Symmetries are fundamental in our understanding in
nature.

- Continuous spacetime symmetries, ex. rotations:

Atomic orbital

- Continuous and discrete internal symmetries in parti-
cle physics :

Ex. the eightfold way : SU(3) Gell-Mann classification
of hadrons

®

quark @

- Discrete symmetries in crystals
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The importance of symmetries in nature is to a large
extent due to the Noether theorem : To any continuous

symmetry corresponds a conserved charge.

Examples :
Symmetry Conserved charge
Time translation Energy
Space translation Momentum
Rotations Angular momentum
Phase rotations wave function Electric charge

- Symmetries are manifest in the spectrum and inter-
actions. Their study greatly simplifies the dynamics.
- In nature, local symmetries determine the fundamen-

tal interactions !



1.2. Quantization and perturbation theory.

We start from Schrodinger versus interaction/Heisenberg

picture in Quantum Mechanics.
H = Ho + Hip
free hamiltonian N\ interaction
Schrodinger eq. is

A Vs@)
dt
time dep.

= (Ho + Hin) Ws(1))
. time-indep. operators.

In the interaction picture

Wr@) = Mo wg(t)) , Hipe(t) = €10 Hypy(t) e "o
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where the time-ordered product is defined as
TA(t1)B(t2) = 0(t1—t2)A(t1)B(t2) + 0(to—t1)B(t2) A(t1)
The S-matrix is defined as
S = lim  Ut;) = TetJW#Hm®) = i fd*oLin(2)
t—o0,t;——00 o
QFT 7~
whereas transition amplitudes are

Sip = (WIS|WV;) = (PPl S Ip1---pn)

= (p}---pl,, out | p1---pn, iN) = no interaction term
m n

+ i (2m)* 64 (> Py — Y pi) Aig
j=1 i=1

Feynman rules are given for the matrix Aif.
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the Schrodinger eq. becomes (Ex:)

AVIOD ) )

We define the evolution operator by

W) = U t)Wit)) Ut ti)

Ex: U satisfies the eq.

CoU(t,t;)
4 T = Hpu(t) U(t,t;)

It can be shown that (Ex:)

Uttt = T ¢ i @)

Scattering amplitude  (p} ---p},, out | p;--
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*Pn, in >
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Let us consider for illustration a scalar theory

1 2 m2 2 )\ 4 1 2 1 2 m2 2 )\ 4
2( ) 5 ¢ 4!¢ 2¢ 2( ) 5 ¢ 4!¢
A
=Lo+ Ling , WwWhere L = — E¢4
e Metric convention nmn = diag(1,—-1,—-1,—1). Conju-
gate momentum @ w = g—g = ¢ and hamiltonian

3 _ [ 3 (1o 1 2, M 5 X4
H= [ d [¢—£} —/dXqu + (VP + 09+ 2

= Ho+ H;+ , Wwhere
Ho = [d 362 +3(Ve)? +5¢?|
Hypy = [d3x gy0*
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and the energy/hamiltonian

1
Hy = /d3k Wk(a;[(ak'i‘ 5) (1)
is one of a collection of quantum oscillators. Therefore

(no interaction in the asymptotic past and future)

[v:) = |p1p2~-pn)=a£1-~-a£n |0)
gy = IpAph- Pl = aly --al, 10)

Feynman rules in perturbation theory then follow from

the expanding in powers of the interaction

WPl S pre-pn) = <0|ap{n"'ap’1T€Zfd :ccmt(w)a;l...ai)n 0)
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Eqgs. and solutions for the free-theory :

(O+m?) ¢(z) = 0 =

kx a;r{ + e—zkm ak)

¢<>—/<2)3/Qm(
where kg = w, = k2 +m?2. The solution ¢(z) is the

operator in the Heisenberg picture. Quantization pro-

ceeds as usual:

lag,al] = 3(k-K) — [p@t,x 7t y)] = i8>(x—y)

The one-particle states are

k) = af|0) = Kk = 63(k-K)
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Perturbation theory is now one of the cornerstones of
QFT. The anomalous magnetic moment of the elec-
tron was computed for the first time by Schwinger at
one-loop in 1948 (the factor below, % is engraved
on Schwinger's tombstone). Today it is known up to

four-loops !

(0%
Ge="_= = + ...

a®P = (1159652185.9 +3.8) x 10712,
at" = (1159652175.9+8.5) x 10712

The agreement is very impressive !
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Feynman diagrams: electron magnetic moment
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There are however still mysteries. For the muon, the
measure value at BNL disagrees by 3.4 o from the the-

oretical SM calculation

th __ QED EW had
a, = a; -I—au -{—au

azxp ~ 0,00116592089

It is likely that the hadronic contribution is not known
accurately enough. This is a very hot research topic

nowdays.
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2. Gauge theories.

The four fundamental interactions in nature

Forces

—— Strong wesss s Electromagnetic s

Gluons (8) m photon /Y,

vee
eoe -
Quarks

-, Atoms

*® D (- .\
WMesons e Chemistry

Baryons Nucel Electronic

— Gravitational s Weak

Graviton ? % Bosons (W) @
.

o
Solar system
Galax o
Black holes =

Heutron decay
et radioact Wity

have a common feature: they are gauge interactions.
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2.1. Gauge invariance of Schrodinger eq.
Simplest example of gauge symmetry: particle mass m

and charge ¢ in quantum mechanics, hamiltonian

1
H=_"(p—qA)’+qV, ()
m

where the vector A and the scalar V potential are re-

lated to the electric/magnetic fields via

A
E=—VV—8— , B=VxA. (3)
ot
Maxwell eqgs. invariant under gauge transformations
0
A’=A+Va,v’=V—8—(;. (4)
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Gauge principle : Postulate that physical laws are in-
variant under (4)4 (6) — the hamiltonian is determined
to be (2). (6) 4+ (4) define an U(1) transformation.
Therefore, U(1) gauge invariance determines the elec-
tromagnetic interaction.

2.2. From Dirac and Maxwell eqgqs. to QED.
Maxwell egs. in terms of A, = (A,V) are invariant

under gauge transformations

Relativistic spin 1/2 fermion described by the Dirac eq.
(iyMOm — M)W = 0.
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The Schrodinger eq. is covariant, with H = H(A,V),
H' = H(A', V')
oV owv’

ih— = HV — ih = H'V/ (5)

ot ot

if the wave function transforms as
W(r,t) = eh W(rt) . (6)

e The mean value of any physically measurable quantity
is gauge invariant, ex. P(r) = |W|? = |W/|?.

Exercice: Defining the velocity operator

v =1(p—gA), check that (W|v|v) = (W/|v/|V).
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Gauge invariance postulate : physics invariant under

(7), supplemented with
W(z) = V(z) = 1w (z) . (8)

Dirac eq. not invariant unless we replace the derivative

with a covariant derivative

DWW = (9 + igAm) W —
(DmW) = (Om + iqAL )W = ) D w(z) . (9)

Dirac eq. in an electromagnetic field becomes

(i Dy, — M)W = (iy"0m — ¢y A — M)W =0 . (10)
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