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1. Quantum fields and Symmetries.

Symmetries are fundamental in our understanding in

nature.

- Continuous spacetime symmetries, ex. rotations:

Atomic orbital



- Discrete symmetries in crystals
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- Continuous and discrete internal symmetries in parti-
cle physics :

EX. the eightfold way : SU(3) Gell-Mann classification
of hadrons

™
quark

A
117 Me¥




The importance of symmetries in nature is to a large
extent due to the Noether theorem : To any continuous

symmetry corresponds a conserved charge.

Examples :
Symmetry Conserved charge
Time translation Energy
Space translation Momentum
Rotations Angular momentum
Phase rotations wave function Electric charge

- Symmetries are manifest in the spectrum and inter-
actions. Their study greatly simplifies the dynamics.
- In nature, local symmetries determine the fundamen-

tal interactions !



1.2. Quantization and perturbation theory.

We start from Schrodinger versus interaction/Heisenberg

picture in Quantum Mechanics.

H

Ho +  Hint
free hamiltonian . interaction

Schrodinger eq. is

i _ﬂ_wsv — (Ho 4+ Hpp) WD)

time dep. . time-indep. operators.

In the interaction picture
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the Schrodinger eq. becomes (EX:)

OO

We define the evolution operator by

Wi(t) = U@ t)|Vi(t)) , Ul,t) =

Ex: U satisfies the eq.

(4
ot
It can be shown that (Ex:)

= H;p () U(t,t;)

UGtt) = T ¢ ey @ Hine(®)
Y1 -
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where the time-ordered product is defined as

TA(t1)B(t2) = 0(t1—t2)A(t1)B(t2) + 0(to—t1)B(t2) A(t1)

The S-matrix is defined as

S = im U t) = Te S dHn®) — i [ d*aLin(z)

t—o00,t;——00
QFT

whereas transition amplitudes are

Sif = (WlS|W;) = (p1- Dl S |p1-- - pn)

= (p} - Pm, OUt | p1---pn, in) = no interaction term

m mn
+ i (2m)* §* (Y Py — > pi) Aif
j=1 i=1
Feynman rules are given for the matrix }\.
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Scattering amplitude  (p)---py,, out | p1---pn, in)
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LLet us consider for illustration a scalar theory

_ 10 m® 5 A4 1, 1 > m? o5 A g
IMQ@V w& N_@ = w@ MAQ@V w& E&

A
= Lo+ Lint , where Ly = — =¢"
e Metric convention nyn, = diag(1l,—1,—1,—1). Conju-
gate momentum : 7 = w|m = ¢ and hamiltonian

3. (395 _ pl — [ 3. |ti2 1 2, M 5 A g4
H= [d T Ll\irg + (V2 + 262 + 2
= Ho+ H;,, , Where

Ho = [d3 m@f%q&fs%i
Hiy = [d3x 20%
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Eqgs. and solutions for the free-theory :

(O+m?) ¢(z) = 0 =
d3k
%vu\siﬁg

A@i&& @Mm i mls.wa @Wv

where kg = wy, = \/k2 +m2. The solution ¢(z) is the
operator in the Heisenberg picture. Quantization pro-

ceeds as usual:

lag,al] = 83(k-K) —  [p@t,x,7(t,y)] = i6>(x—y)

T he one-particle states are

k) = af|0) = K|k = 3(k-K)
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and the energy/hamiltonian

1
mo = \&ww Ewﬁgﬁmﬁml_l Mv A”_.v
is one of a collection of quantum oscillators. Therefore

(no interaction in the asymptotic past and future)

i) = |p1p2---pn) = ab, ---ab, |0)
[bp) = IPhwhP) =af, - al, ]0)

Feynman rules in perturbation theory then follow from

the expanding in powers of the interaction

/
Py
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Perturbation theory is now one of the cornerstones of
QFT. The anomalous magnetic moment of the elec-

tron was computed for the first time by Schwinger at

one-loop in 1948 (the factor below, % IS engraved

on Schwinger's tombstone). Today it is known up to

four-loops !

> 27
a®P = (1159652185.9 +3.8) x 10712
al" = (1159652175.9 +8.5) x 10~ 12

The agreement is very impressive |
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There are however still mysteries. For the muon, the
measure value at BNL disagrees by 3.4 ¢ from the the-

oretical SM calculation

ﬁj|0_m_u _m<< ij
a, = a |_|©t |_|@t

a; P ~ 0,00116592089

It is likely that the hadronic contribution is not known
accurately enough. This is a very hot research topic

nowdays.
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Feynman diagrams: electron magnetic moment
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2. Gauge theories.
The four fundamental interactions in nature

Forces

s Sirong = m= Electromagnetic s

Gluons (8) 8 Photon M\

LR
»

e0e —
Quarks .
. Atoms 0
“ @ -y Light »
Mesons . Chemistry
Baryons Nuclel Elecironics

mmmm Gravitational s s Weak s

Graviton ? @ Bosons (W,Z)

_—0

_—
Solar system Neutron decay
Galaxies 0 Beta radloactivity -
Black holes Neutrino Interactlons b
Burning of the sun
T are repre:

have a common feature: they are gauge interactions.
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2.1. Gauge invariance of Schrodinger eq.
Simplest example of gauge symmetry: particle mass m

and charge g in quantum mechanics, hamiltonian

1
H=_—(p- gA)? + qV | (2)
m

where the vector A and the scalar V potential are re-

lated to the electric/magnetic fields via

O0A
E=-VW-— | B=VxA. (3)
ot
Maxwell egs. invariant under gauge transformations
o,
A=A+va,V=v_-2L (4)

ot
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The Schrodinger eq. is covariant, with H = H(A,V),
H = H(A, V)

W W/
3@| = HV — %m| = H'V/ (5)
ot ot

if the wave function transforms as

W(r,t) = eh W(rt) . (6)
e T he mean value of any physically measurable quantity
is gauge invariant, ex. P(r) = |W|2 = |W/|2.
Exercice: Defining the velocity operator
v = 1(p—qA), check that (V|v|¥) = (V/|v/|W/).
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Gauge principle : Postulate that physical laws are in-
variant under (4)+ (6) — the hamiltonian is determined
to be (2). (6) 4+ (4) define an U(1) transformation.
Therefore, U(1) gauge invariance determines the elec-
tromagnetic interaction.

2.2. From Dirac and Maxwell eqs. to QED.
Maxwell eqgs. in terms of A,, = (A,V) are invariant

under gauge transformations

Am — A = Ay — Oma . (7)

Relativistic spin 1/2 fermion described by the Dirac eq.
(1Y Oy — M)W = 0.
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Gauge invariance postulate : physics invariant under

(7), supplemented with
V(z) — V(z) = QSQA&VGAHV . (8)

Dirac eq. not invariant unless we replace the derivative

with a covariant derivative

DV = (8 + iqAm)V  —
(D W) = (O + iqgA. )W = 1@ D w(z) . (9)

Dirac eq. in an electromagnetic field becomes

(1" Dy, — M)WV = (iy"0m — gy Am — M)W =0 . (10)
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