
The Dirac and Maxwell eqs. can be derived from the

lagrangian

LQED = Ψ̄(iγmDm −M)Ψ− 1

4
F2

mn . (11)

The coupled Euler-Lagrange field eqs. are then (10),

plus

∂mFmn = gΨ̄γnΨ ≡ jn , (12)

where jn is the electromagnetic current of the charged

fermion. From (12) we can derive the charge conser-

vation

25

∂mjm = 0→ dQ

dt
=

�
d3x ∂mjm = 0 ,

where Q =
�

d3x j0(x) . (13)

• The massless photon has two degrees of freedom.

• A photon mass Lmass =
M2

A
2 A2

m breaks gauge invari-

ance and describes three degrees of freedom.

• The propagator of a massive photon is found from

−1

4
F2

mn +
M2

A

2
A2

m =
1

2
Am[gmn(� + M2

A)− ∂m∂n]An,

∆−1
mn(x− y) = [gmn(� + M2

A)− ∂m∂n]δ4(x− y) (14)
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Therefore, in momentum space (exercice)

∆mn(k) =
gmn − kmkn

M2
A

k2 −M2
A

. (15)

• Due to the current conservation ∂mjm = 0, the longi-

tudinal polarization does not contribute to amplitudes

→ UV properties of the massless and massive photon

theories are the same.

• Experimental limit photon mass mγ ≤ 10−18 eV.

2.3. Non-abelian gauge theories.

U(1) is a particular case of unitary abelian transforma-

tions. Another case of particular interest : non-abelian

transformations.
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SU(n) transformations are described by matrices U , sat-

isfying

U†U = UU† = I , det U = 1 . (16)

The simplest case is SU(2), proposed by Yang and Mills

in 1954. Simplest representation is a doublet

Ψ =

�
Ψ1
Ψ2

�

, Ψ� = U(θ)Ψ , where U(θ) = e
i
2gθaτa ,(17)

where τa are the Pauli matrices. The number of gauge

bosons equals the number of generators (three for SU(2)).

Simplest to introduce a matrix

Wm = Wa
m

τa

2
=

�
W3

m W1
m − iW2

m
W1

m + iW2
m −W3

m

�

≡
�

W3
m

√
2W+

m√
2W−

m −W3
m

�

29

Exercice : show that

DmΨ ≡ (∂m − igWm)Ψ→ (DmΨ)� = UDmΨ ,

if Wm → W �
m = UWmU−1 − i

g
(∂mU)U−1 (18)

and the infinitesimal variation in component form

δWa
m = Dmθa ≡ ∂mθa + g�abcW

b
mθc (19)

The field strength is built from

[Dm, Dn] = −igFmn (20)

Exercice : show that

Fmn = ∂mWn−∂nWm−ig[Wm, Wn] , Fmn → F �mn = UFmnU−1

30

For SU(2) this implies (exercice :)

Fa
mn = ∂mWa

n − ∂nWa
m + g�abcW

b
mWc

n (21)

The Yang-Mills lagrangian is

LY M = −1

4
Fa

mnFa,mn = −1

4
(∂mWa

n − ∂nWa
m)2

−g

2
�abc∂mWa

nWb,mWc,n − g2

4
�abc�adeW

b
mWc

nWd,mWe,n

• Non-abelian gauge bosons have self-interactions, un-

like the photon ! Full Lagrangian describing interaction

of Yang-Mills fields with charged fermions

L = Ψ̄(iγmDm −M)Ψ− 1

4
Fa

mnFa,mn . (22)
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Exercice : show that for an SU(2) doublet

Ψ̄(iγmDm−M)Ψ = Ψ̄k[δkl(iγ
m∂m−M)+

g

2
γmWa

m(τa)kl]Ψ
l

Field eqs. are

(iγmDm −M)Ψ = 0 ,

∂mFa
mn + g�abcA

b,mFc
mn = −gΨ̄γn

τa

2
Ψ (23)

on the r.h.s. is the SU(2) fermionic current ja
n �

• Here ∂mja
m �= 0 ; a massive field propagator is

∆ab
mn(k) = δab

gmn − kmkn
M2

A

k2 −M2
A

. (24)

• and the longitudinal polarization does contribute to

amplitudes.
32



→ UV properties of the massless and massive YM theo-

ries are different. The Yang-Mills boson masses should

not be added by hand.

33

3. Spontaneous symmetry breaking.

Symmetries (Noether theorem) → conserved charges.

There are however two ways the symmetries are real-

ized in nature :

i) Weyl-Wigner : vacuum state is invariant under the

symmetry → symmetry manifest in the spectrum and

interactions.

Ex: translations (momentum), rotations (angular mo-

mentum), U(1)em (electric charge)...

ii) Nambu-Goldstone : vacuum state not invariant un-

der the symmetry → symmetry not manifest.

34

Ex : rotation (or parity) symmetry in ferromagnets,

SU(2)weak, SU(2)L×SU(2)R chiral symmetry of strong

interactions.

Coleman : ”the symmetry of the vacuum is the sym-

metry of the world”.

Simplest example of the NG realization is the Ising

model dimension d, N spins, of hamiltonian

H = −J
�

(i,j)

SiSj −B
�

i

Si , (25)

with Si = ±1. For zero magnetic field B = 0 the system

has a Z2 symmetry Si → −Si.
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The magnetization

M = lim
B=0,N→∞

1

N

N�

k=1
�Sk�

should therefore vanish. However

M = 0 for T ≥ Tc , M �= 0 for T < Tc, where kTc = 2dJ

(26)
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3.1 The Goldstone theorem.

In a theory with continous symmetry, for every gener-

ator which does not annihilate the vacuum �TaΦ� �= 0

there is a massless, NG particle.

Ex: The O(N) linear sigma model.

N scalar fields Φ = (Φ1,Φ2, · · ·ΦN), with lagrangian

L =
1

2
(∂mΦ)2− V (Φ) , V (Φ) = −µ2

2
Φ2 +

λ

4
(Φ2)2 (27)

The model has a continous O(N) symmetry acting as

Φ → RΦ, with R a rotation matrix. The potential is

minimized for

Φ0
2 =

µ2

λ
≡ v2 (28)
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The vacuum manifold is O(N) invariant. By a rotation,

the ground state can be chosen to be

Φ0 = (0,0 · · · v) (29)

preserving an O(N−1) subgroup. Goldstone’s theorem:

we expect N − 1 massless particles, O(N)/O(N − 1).
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In order to check this, we define a set of shifted fields:

Φ(x) = (πk(x), v + σ(x)) , k = 1 · · ·N − 1 , (30)

such that �πk� = �σ� = 0. The lagrangian becomes

L =
1

2
((∂mπ)2 + (∂mσ)2)− µ2σ2 −

√
λ µσ3

−
√

λ µπ2σ − λ

4
(σ2 + π2)2 (31)

The manifest symmetry is indeed O(N − 1), rotating

the π’s. The physical masses are

m2
σ = 2π2 , m2

πk
= 0 (32)

The ”pions” are massless, they are the NG bosons.

O(N−1) is realized a la WW, O(N) is realized a la NG.
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General (classical) proof of the Goldstone theorem. Con-

sider

L =
1

2
(∂mΦi)

2 − V (Φi) (33)

and a global continuous symmetry

V (Φi + δΦi) = V (Φi) , with δΦi = iθaTa
ijΦj (34)

that implies

∂V

∂Φi
T a

ijΦj = 0 . (35)
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Differentiating again and taking the vev, we get

� ∂2V

∂Φk∂Φi
T a

ijΦj +
∂V

∂Φi
T a

ik� = 0 (36)

In the vacuum, M2
ki = ∂2V

∂Φk∂Φi
is the scalar mass matrix,

whereas � ∂V
∂Φi

� = 0. Then we get

M2
ki (Tav)i = 0 (37)

If the vacuum is not invariant under the symmetry gen-

erator Tav �= 0, then Tav is an eigenvector of the mass

matrix M2 corresponding to a zero eigenvalue

→ the Goldstone theorem.

What happens if the symmetry is local (gauge) ?
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3.2 The Higgs mechanism.

Consider an abelian gauge theory

L = −1

4
F2

mn + |DmΦ|2 − V (Φ) , (38)

with Dm = ∂m + ieAm, Φ = 1√
2
(Φ1 + iΦ2), and scalar

potential

V = −µ2|Φ|2+λ(|Φ|2)2 = −µ2

2
(Φ2

1+Φ2
2)+

λ

4
(Φ2

1+Φ2
2)

2 ,

(39)

invariant under the local U(1) transformations

Φ→ eiα(x)Φ , Am → Am −
1

e
∂mα (40)

We expand around the vacuum state
42

Φ0 =

�
µ2

2λ
=

v√
2

, Φ(x) =
1√
2
(v + φ1 + iφ2) (41)

From the quadratic mass terms we find m2
1 = 2µ2,

m2 = 0, so φ2 is the Goldstone boson. New features

appear from the kinetic term

|DmΦ|2 =
1

2
(∂mφi)

2 + evAm∂mφ2 +
e2v2

2
A2

m + · · · (42)

→ the gauge boson acquired a mass M2
A = e2v2. But

this can only happen if

Am(MA = 0) + φ2 → Am(MA �= 0) (43)

This is indeed true and can be seen in various ways:
43

i) The quadratic term can be diagonalized

−1

4
F2

mn +
1

2
(∂mφ2)

2 +
√

2evAm∂mφ2 +
e2v2

2
A2

m

= −1

4
(∂mBn − ∂nBm)2 +

e2v2

2
B2

m , (44)

where Bm = Am + 1
ev∂mφ2. φ2 disappeared from the

quadratic part, and is absorbed into the longitudinal

component of the gauge field.

ii) The Goldstone can be eliminated altogether in the

unitary gauge

Φ(x) =
1√
2

e
iθ(x)

v (v + ρ(x)) (45)

by the trans. Φ→ Φ� = e−
iθ
v Φ, Am → A�m = Am+ 1

ev∂mθ.
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In the unitary gauge, the lagrangian is

L = −1

4
(F �mn)

2+(∂m−ieA�m)Φ�(∂m+ieA�m)Φ�−µ2Φ�2−λΦ�4

Higgs mechanism, non-abelian case

Consider a gauge group G of rank r and scalar fields in

some irreducible n-dim. representation

L = −1

4
Fa

mnFa,mn + |[(∂m − igTaAa
m)Φ]|2 − V (Φ) (46)

with V the scalar potential minimized for �Φ� = v, and

H ∈ G the subgroup of rank s leaving v invariant

Tav = 0 , a = 1 · · · s

Tav �= 0 , a = s + 1 · · · r (47)
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Unitary gauge parametrization (� Goldstone’s)

Φ(x) = ei
�r

a=s+1 Ta
ξa(x)

v
ρ(x) + v√

2
, (48)

where �ξa� = �ρ� = 0. The gauge trans.

Φ(x)→ Φ�(x) = UΦ , with U = e−i
�r

a=s+1 Ta
ξa(x)

v

Am → A�m = U (Am +
i

g
∂m) U−1 (49)

eliminates the Goldstone’s from the lagrangian. The

resulting mass matrix of the vector fields is then

M2
ab = g2(Tav)†(Tbv) ; (50)

r − s gauge bosons become massive.
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Aa
m + ξa → A�am = Aa

m −
1

v
Dmξa + · · · (51)

massless � � massive
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4. The electroweak sector of the Standard Model.

4.1. Gauge group and matter content.

Standard model = ”unified” description of weak and

electromagnetic interactions. From the Fermi theory

of weak interactions

with GF/
√

2 = g2/8M2
w, we know that we need at least

a charged gauge boson W±
m and the photon Am.
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