The Dirac and Maxwell egs. can be derived from the
lagrangian

_ 1
Lopp = \u(mem—M)w—ZFﬁm . (11)

The coupled Euler-Lagrange field eqgs. are then (10),
plus
0" Fn = gu_j'an =Jn, (12)

where j, is the electromagnetic current of the charged
fermion. From (12) we can derive the charge conser-

vation

25
Therefore, in momentum space (exercice)
mn _ kKME™

e Due to the current conservation 9™j,, = 0, the longi-
tudinal polarization does not contribute to amplitudes
— UV properties of the massless and massive photon
theories are the same.

e Experimental limit photon mass m~, < 10718 ev.
2.3. Non-abelian gauge theories.

U(1) is a particular case of unitary abelian transforma-
tions. Another case of particular interest : non-abelian

transformations.
27

dQ 3 .
% [ Bx 0™ =0,
dt / X 0gm

where Q = /d3x jo(x) . (13)

e The massless photon has two degrees of freedom.

2
e A photon mass Lmass = %A?n breaks gauge invari-
ance and describes three degrees of freedom.

e The propagator of a massive photon is found from

1 - M3 o 1 .. 2 n
_Zan + 7Am = EA [gmn (0 + M%) — Omon] A",
ALz —y) = [gnn(D + M3) — 0mdnl6*(z — y) (14)
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Noncommulative e = S T
Obentioh R1R2#R2Rl  R1: counter-clockwise rotation of 90° ahout the x axis

An object is totated by 90° around two different axes  R2 ; counter-clockwise rotation of 90° ahout the z axis

R1 R2 R1
Ist fotation 1 nd rotation 1

" -y \‘\

R2 R1
Applying the same rotations in reverse order leads to a diflerent outcome

1
x R2 s R1 R2

15t rotation 2nd rotation
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SU(n) transformations are described by matrices U, sat-

isfying
vlv=vut=1 , detU=1. (16)

The simplest case is SU(2), proposed by Yang and Mills

in 1954. Simplest representation is a doublet

WV = ($;) , W = U(G)\U , where U(@) — e%g@m'a ’(17)

where 1, are the Pauli matrices. The number of gauge
bosons equals the number of generators (three for SU(2)).
Simplest to introduce a matrix
 aTa w3 Wi —iw2\ _ [ w3 Vewik
2 W, + W5, -Wy, V2w, W3
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For SU(2) this implies (exercice :)
F;er = ang - 8”W7% + gﬁachﬁzWT(i (21)

The Yang-Mills lagrangian is

1 1
Lynr = =5 Fpn P = =2 (0mWyy — 0nWi)?

2
=3 €abeOmWAW WO — & oo WhWEW W

e Non-abelian gauge bosons have self-interactions, un-
like the photon ! Full Lagrangian describing interaction

of Yang-Mills fields with charged fermions
_ 1
L=WV(y"Dp — M)WV — ZF,‘,‘mF“’m” . (22)
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Exercice : show that
DWW = (0 — igWin))V — (D W) = UDp W
if Wi — W, =UWU ! — ;(6mU)U1 (18)
and the infinitesimal variation in component form
SWE = Dnb® = 0mb® + gegp W 0° (19)
The field strength is built from
[Dm, Dp] = —igFmn (20)
Exercice : show that

an = 8mWn78nWm*Zg[Wm, Wn] s an — F;TLTL = UanUil
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Exercice : show that for an SU(2) doublet
U (iy" D= MW = WF (517" O — M)+ 55" W (7)) W'
Field egs. are

(i Dy — M)W =0 ,

" Fit + 9eabe A" Fipy = g 5w (23)

on the r.h.s. is the SU(2) fermionic current j& ~_

e Here 9™j% # 0 ; a massive field propagator is

A® (k) = 6%Y—k— A4, 24

e and the longitudinal polarization does contribute to

amplitudes.
32



— UV properties of the massless and massive YM theo-
ries are different. The Yang-Mills boson masses should
not be added by hand.
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Ex : rotation (or parity) symmetry in ferromagnets,
SU(2) weak: SU(2), x SU(2) g chiral symmetry of strong
interactions.
Coleman : "the symmetry of the vacuum is the sym-
metry of the world"”.
Simplest example of the NG realization is the Ising
model dimension d, N spins, of hamiltonian

H=-J> 8S;—B>_ 5, (25)

(i,5) i

with S; = £+1. For zero magnetic field B = 0 the system

has a Z> symmetry S; — —5,.
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3. Spontaneous symmetry breaking.

Symmetries (Noether theorem) — conserved charges.
There are however two ways the symmetries are real-
ized in nature :

i) Weyl-Wigner : vacuum state is invariant under the
symmetry — symmetry manifest in the spectrum and
interactions.

Ex: translations (momentum), rotations (angular mo-
mentum), U(1)em (electric charge)...

ii) Nambu-Goldstone : vacuum state not invariant un-
der the symmetry — symmetry not manifest.
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The magnetization

1 N
M = lim — <Sk>
B=0,N—oco N b1

should therefore vanish. However

M=0forT>T., M#0 for T <T., where kT, = 2dJ
(26)

P e ]
it dd A
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3.1 The Goldstone theorem.

In a theory with continous symmetry, for every gener-
ator which does not annihilate the vacuum (T%®) #= 0O
there is a massless, NG particle.

Ex: The O(N) linear sigma model.

N scalar fields ® = (P, Do, --- D), with lagrangian

_1 2 _ P io Ao
£—2(3m‘1’) V(®), V(®) = 2‘1’ +4(<I’) (27)

The model has a continous O(N) symmetry acting as
® — R®, with R a rotation matrix. The potential is

minimized for

12
b2 = o v? (28)
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In order to check this, we define a set of shifted fields:
®(z) = (7F(2), v+ o)), k=1---N—1, (30)

such that (%

~

= (o) = 0. The lagrangian becomes

L= =((0mm)? + (0m0)?) — u?0” = VA po®

NI+~

A
—VA /L7T2O'—Z(O'2+7T2)2 (31)
The manifest symmetry is indeed O(IN — 1), rotating

the ©'s. The physical masses are

m2 =2r%, m2, =0 (32)

, they are the NG bosons.

O(N —1) is realized a la WW, O(N) is realized a la NG.
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The vacuum manifold is O(N) invariant. By a rotation,

the ground state can be chosen to be

®p=(0,0---v) (29)
preserving an O(NN —1) subgroup. Goldstone's theorem:
we expect N — 1 massless particles, O(N)/O(N — 1).

38

General (classical) proof of the Goldstone theorem. Con-

sider
1 2
L= (0m®)? = V() (33)
and a global continuous symmetry
V(®; 4+ 6P;) = V(P;), with §b; = z’H“Ti‘;cbj (34)
that implies
ov
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Differentiating again and taking the vev, we get

o2V . ov .
<a¢ka¢iTij¢j T a¢iTik> =0 (36)
In the vacuum, Mz, = % is the scalar mass matrix,
1

whereas <%> = 0. Then we get

MG; (T%); = 0 (37)
If the vacuum is not invariant under the symmetry gen-
erator T% # 0, then T% is an eigenvector of the mass
matrix M?2 corresponding to a zero eigenvalue
— the Goldstone theorem.
What happens if the symmetry is local (gauge) ?
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2
o v 1 .
Po =/ =L b)) =~ i 41
0 2" 3 () \/5( + ¢1 +igo)  (41)
From the quadratic mass terms we find m? = 2u?,

mo = 0, SO ¢o is the Goldstone boson. New features

appear from the kinetic term

2,2

e~v

o An o (42)

— the gauge boson acquired a mass M3 = e?v?. But

1
| Dy ®|? = 5(amgbi)2 + evAmdM o +

this can only happen if

Am(Mg4 = 0) + ¢ — An(M4 # 0) (43)

This is indeed true and can be seen in various ways:
43

3.2 The Higgs mechanism.

Consider an abelian gauge theory

1
L= =" Fn +Dn®? = V(®) | (38)

with Dy, = O + ieAm, ® = %(@1 + i®5), and scalar
potential

2 h
V= i @P A7 = T (@F R+ (0T +03)?

(39)
invariant under the local U(1) transformations
ia(x) 1
& — @ Ay — Am — ZOma (40)
e
We expand around the vacuum state
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i) The quadratic term can be diagonalized
1 1 €292
~ Fin + 5 (0mé2)? + V2e0And™bp + = A7,
1 €292
=~ (OmBn — 0nBm) + —— B, (44)

where By, = Am + éam@. ¢o disappeared from the
quadratic part, and is absorbed into the longitudinal
component of the gauge field.
ii) The Goldstone can be eliminated altogether in the
unitary gauge

1 i)

d(x) ::A;ZE v

by the trans. ® — ¢’ = e_%cb, Am — A, = Am—i—%@me.

a4

(v +p(x)) (45)



In the unitary gauge, the lagrangian is

1
L= _Z(F,’,m)2+(am—@eA;n)cb’(am+z'eA’m)q:’_M?cb’Q_Acb"‘

Higgs mechanism, non-abelian case
Consider a gauge group G of rank r» and scalar fields in

some irreducible n-dim. representation
1
L=~ Fn P 4 |[(0m — igT" A7) ®]|2 = V(®) (46)

with V the scalar potential minimized for (®) = v, and

H € G the subgroup of rank s leaving v invariant

T =0 , a=1---s
T%#0 , a=s+1--r (47)
45
1
A%+ &g — A’%:A%—;Dmga-l-m (51)
massless . massive

a7

Unitary gauge parametrization (, Goldstone's)

B(x) = ¢ Simep1 T P@ o g

V2

where (&,) = (p) = 0. The gauge trans.

PN a(z)
d(z) = '(z) = UD , with U = e ? Za=s+17"%

Am — AL =U (Am + 20m) UL (49)
g
eliminates the Goldstone's from the lagrangian. The
resulting mass matrix of the vector fields is then
M3, = g*(Tav) (Tyo) ; (50)
r — s gauge bosons become massive.
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4. The electroweak sector of the Standard Model.
4.1. Gauge group and matter content.

Standard model = "unified” description of weak and
electromagnetic interactions. From the Fermi theory

of weak interactions

with Gp/v2 = g2/8 M2, we know that we need at least

a charged gauge boson W,,% and the photon An,.
48



