QCD in Heavy Ion Collisions: II

Edmond Iancu Institut de Physique Théorique de Saclay

Lecture I: Initial conditions

- ullet au < 0: hadronic wavefunctions prior to the collision
 - high-energy evolution & the Color Glass Condensate
 - it applies to any highly energetic hadron (proton or nucleus)

Lecture I: Initial conditions

- \bullet au < 0: hadronic wavefunctions prior to the collision
- \bullet $\tau \sim 0$ fm/c : the hard scattering
 - production of hard particles: jets, direct photons, heavy quarks
 - calculable within (standard) perturbative QCD ('leading twist')
 - 'hard probes' of the surrounding medium

Lecture I: Initial conditions

- ullet au < 0: hadronic wavefunctions prior to the collision
- \bullet $\tau \sim 0$ fm/c : the hard scattering
- $\tau \sim 0.2$ fm/c : strong color fields (or 'glasma')
 - semi-hard quanta ($p_{\perp} \lesssim 2$ GeV): gluons, light quarks
 - make up for most of the multiplicity
 - sensitive to the physics of saturation ('higher twist')

- \bullet $au\sim 1$ fm/c : thermalization
 - experiments suggest a fast thermalization
 - ...but this is not yet firmly understood within QCD
 - weak or strong coupling ?
 - kinetic theory, plasma instabilities, AdS/CFT

- \bullet $au\sim 1$ fm/c : thermalization
- ullet $1\lesssim au\lesssim10$ fm/c : quark-gluon plasma
 - thermodynamics: lattice QCD vs. perturbative QCD
 - transport phenomena: kinetic theory, hard thermal loops
 - flow: hydrodynamics
 - jet quenching: medium-induced gluon radiation, AdS/CFT

- \bullet $au\sim 1$ fm/c : thermalization
- ullet $1\lesssim au\lesssim 10~{
 m fm/c}$: quark-gluon plasma
- $10 \lesssim \tau \lesssim 20$ fm/c : hot hadron gas
 - hadronisation: confinement
 - the hadron gas keeps expanding and cooling down

- \bullet $au\sim 1$ fm/c : thermalization
- \bullet $1\lesssim au\lesssim 10$ fm/c : quark-gluon plasma
- $10 \lesssim \tau \lesssim 20 \text{ fm/c}$: hot hadron gas
- \bullet $\tau > 20$ fm/c : freeze out
 - the density becomes too small to have interactions
 - the produced hadrons exhibit a thermal spectrum

Flow and Thermalization

From ridge to flow

• What is the origin of the double peak structure ($\Delta \phi = 0$ and $\Delta \phi = \pi$) seen in di-hadron correlations in Au+Au?

$$\mathcal{R} \equiv \frac{\left\langle N_1 \, N_2 \right\rangle - \left\langle N_1 \right\rangle \left\langle N_2 \right\rangle}{\left\langle N_1 \right\rangle \left\langle N_2 \right\rangle} \, \propto \, v_2^2 \, \cos \left(2 \Delta \phi \right)$$

This is elliptic flow!

The geometry of a HIC

Number of participants (N_{part}): number of incoming nucleons (participants) in the overlap region

Elliptic flow v_2

$$\frac{\mathrm{d}N}{\mathrm{d}\phi} \propto 1 + 2v_2 \cos 2\phi$$

 v_2 : the 'coefficient of the elliptic flow'

- Non-central AA collision: impact parameter $b_{\perp}>0$
- The interaction region is (roughly) elliptic
- Pressure gradient is larger along the smaller axis (x)
- Fluid velocity is proportional to the pressure gradient
- Particle emerge predominantly parallel to the fluid velocity
 - ⇒ the particle distribution is not axially symmetric!

The role of fluctuations (1)

- Nucleons are randomly distributed inside a nucleus.
- The participants (nucleons which undergo at least one collision) do not make exactly an ellipse ...
- ... and the minor axis of that (approximate) ellipse needs not be exactly along the x axis!

$$\frac{\mathrm{d}N}{\mathrm{d}\phi} \propto 1 + 2v_2 \cos 2(\phi - \Psi_2)$$

• The event plane is not the same as the reaction plane!

The role of fluctuations (2)

- In some events, the shape of the interaction can be quite different from an ellipse!
- Then one speaks about triangular flow ...

$$\frac{dN}{d\phi} \propto 1 + 2v_2 \cos 2(\phi - \Psi_2) + 2v_3 \cos 3(\phi - \Psi_3) + \dots$$

• ... or even higher harmonics

The role of fluctuations (3)

 And of course all these harmonics can coexistent (in different proportions) within a same event!

$$\frac{\mathrm{d}N}{\mathrm{d}\phi} \propto 1 + \sum_{n=1}^{\infty} 2v_n \cos n(\phi - \Psi_n)$$

- This amounts to a Fourier decomposition of the azimuthal distribution of the participants!
- ullet The most amazing: all these v_n 's can actually be measured

v_n from 2-particle correlations

$$\left\langle \frac{\mathrm{d}N_{pairs}}{\mathrm{d}\Delta\phi} \right\rangle \propto 1 + 2\sum_{n=1}^{\infty} \left\langle v_n^2 \right\rangle \cos n(\phi - \Psi_n)$$

ullet The reference phases Ψ_n drop out in the convolution !

• Integrate the data within slices of $\Delta \eta$, perform a Fourier transform per slice, then present v_n as functions of $\Delta \eta$, p_{\perp} and in bins of centrality

Centrality bins in a HIC

- The more central an event is, the higher the (transverse) energy deposited in the forward calorimeter
- ullet The 10% events with the highest energy deposit \equiv 'the 10% most central events

Centrality dependence for v_2

ALICE, arXiv:1105.3865

• The larger the centrality, the smaller v_2 ! for central collisions, the interaction region has spherical symmetry \implies no flow!

Momentum dependence for v_2

- v₂ first rises up to 3 ÷ 4 GeV, then decreases again.
 ▷ relatively hard/fast particles cannot be driven by the flow (imagine a bullet flowing with the wind)
- ullet No significant increase in v_2 from RHIC to LHC

p_{\perp} dependence for v_n , n=2-6

(Talk by J. Jia for the ATLAS Collaboration at Quark Matter 2011)

• Similar p_{\perp} dependence for all n: rise up to 3-4 GeV, then fall

Pseudorapidity dependence for v_n

- Weak η dependence for all v_n 's !
- Distributions which are boost-invariant (independent of η) at early times flow in the same way and give rise to 'ridge' and 'hump'

From flow to Hydro

- What can we learn out of the flow data (concerning QCD)?
- We first learn that this matter is a fluid (it flows!)
 - 'this matter': hadrons until freeze-out
 - partonic matter in the intermediate stages
- Non-trivial! It implies relatively strong interactions!
 - dust (no interactions) does not flow!
 - a liquid flows better than a gas (weak interactions)
- If it flows, one can use hydrodynamics
 - the effective theory for flow (see below)
- Hydro involves initial conditions and transport coefficients, which teach us about the state of the system
- Success of hydro strongly suggests (but not necessarily implies) local thermal equilibrium

Hydrodynamics in a nut shell

- Standard thermodynamics: a system in global thermal equilibrium
 - pressure (P), temperature (T), chemical potential (μ) are independent of time ...
 - ullet and uniform throughout the volume V of the system
- Hydrodynamics is about (quasi) local thermal equilibrium
 - ullet P, T and μ can vary with space and time ...
 - ... but they vary so slowly that one can still assume thermal equilibrium to hold locally, in the neighborhood of any point
 - the velocity v can be different for different fluid elements
- Hydrodynamics : effective theory of small gradients
- It holds when the mean free path of the particles in the system is much smaller than any system size.
 - 'mean free path' : distance between two successive collisions

Hydro equations = the conservation laws

$$\partial_{\mu} T^{\mu\nu} = 0 \qquad \qquad \partial_{\mu} J_B^{\mu} = 0$$

- $T^{\mu
 u}$ (energy–momentum tensor) and J^{μ}_{B} (baryonic current) :
 - fluid velocity: $u^{\mu} = \gamma(1, \mathbf{v}), \ \gamma = 1/\sqrt{1-v^2}$
 - ullet energy density arepsilon=E/V & pressure P
 - additional parameters ('viscosities') for a non-ideal fluid
- 'Ideal fluid'

 local thermal equilibrium

$$T_{(0)} = \left(\begin{array}{cccc} \epsilon & 0 & 0 & 0 \\ 0 & P & 0 & 0 \\ 0 & 0 & P & 0 \\ 0 & 0 & 0 & P \end{array} \right) \qquad \text{in the local rest frame}: \quad u^\mu = (1,0)$$

• After a boost to the laboratory frame, this becomes:

$$T^{\mu\nu} = (\varepsilon + P)u^{\mu}u^{\nu} - Pg^{\mu\nu}$$

Viscous hydrodynamics

- Ideal hydro assumes that there is no dissipation (no friction)
- You may think this means the coupling is weak...but you'd be wrong!
 it actually means that the coupling is infinite! (see below)
- Real fluids have no infinite coupling, so they have dissipation.
- This is described by transport coefficients known as viscosities

$$T^{\mu\nu} = (\varepsilon + P)u^{\mu}u^{\nu} - Pg^{\mu\nu} \oplus (\eta, \zeta) \otimes \partial u \oplus$$

N.B. Viscous effects enter $T^{\mu\nu}$ as gradient corrections

- For the hydro problem to be well defined, one needs to specify:
 - ullet the equation of state which relates arepsilon to P
 - the initial conditions (at $\tau = \tau_0$) for ε and ${\bf v}$
 - the viscosities η , ζ

Hydro calculations ...

• ... do a good job in qualitatively explaining the 'ridge'...

(STAR. arXiv:1010.0690)

(Takahashi, Tavares, Andrade, Grassi, Hama, Kodama, Xu, Phys.Rev.Lett.103, 242301 (2009))

Hydro simulations for v_2

• ... and quantitatively reproducing the elliptic flow ! (Luzum and Romatschke. 08)

- However, a good hydro description of the data requires :
 - a very short equilibration (isotropisation ?) time $\tau_0 \lesssim 1$ fm/c
 - ullet a very small viscosity/entropy ratio $\eta/s < 0.2$
- Both properties are puzzling ... at least at weak coupling!

The thermalization puzzle

 The energy-momentum distribution right after the collision is maximally anisotropic: longitudinal expansion, glasma flux tubes

$$T_{\rm eq} = \left(\begin{array}{cccc} \varepsilon & 0 & 0 & 0\\ 0 & P & 0 & 0\\ 0 & 0 & P & 0\\ 0 & 0 & 0 & P \end{array}\right)$$

$$T_{
m eq} = \left(egin{array}{cccc} arepsilon & 0 & 0 & 0 \ 0 & P & 0 & 0 \ 0 & 0 & 0 & P \end{array}
ight) \hspace{1cm} T_{
m initial} = \left(egin{array}{cccc} \epsilon & 0 & 0 & 0 \ 0 & arepsilon & 0 & 0 \ 0 & 0 & arepsilon & 0 \end{array}
ight)$$

 How can the system become isotropic over such a short time $\tau_0 \lesssim 1 \text{ fm/c } ??$

Thermalization at weak coupling

- To evolve towards isotropy and thermal equilibrium, particles must exchange energy and momentum with each other.
- They can do that through collisions.
- ullet Weak coupling: the dominant mechanism is 2 o 2 elastic scattering

- ullet Cross–section (σ) scales like |amplitude|2, hence like $g^4 \sim lpha_s^2$
- Mean free path (ℓ) = average distance between successive collisions

$$\ell \sim \frac{1}{\text{density} \times \sigma} \sim \frac{1}{\alpha_s^2}$$

- Typical equilibration time: $au_{\rm eq} \sim \ell/v \sim 1/\alpha_s^2$
- Weakly coupled systems have large equilibration times !

Shear viscosity

- Weakly coupled systems also have large viscosity/entropy ratio!
- \bullet η : a measure of a fluid ability to transfer p_x in the y direction

• Proportional to the mean free path $\ell \propto 1/\sigma \sim 1/g^4$ \Rightarrow larger at weak coupling! (Maxwell, 1860)

Viscosity over entropy density ratio

• $\eta \sim \ell \times \varepsilon$ (ℓ : mean free path; ε : energy density). Thus,

$$\frac{\eta}{s} \sim \ell \; \frac{\varepsilon}{s} \sim \frac{\text{mean free path}}{\text{de Broglie wavelength}}$$

(since
$$\varepsilon/s \sim$$
 energy per particle $\sim 1/\lambda_B$)

- Heisenberg's uncertainty principle forbids ℓ/λ_B to be smaller than one (actually smaller than \hbar , but we work in 'natural units' : $\hbar=1$)
- Hence, $\frac{\eta}{s} \gtrsim \mathcal{O}(1)$
- ullet Weakly interacting systems have $\eta/s\gg 1$
- \bullet The matter produced in HIC has $\eta/s \, \sim \, \mathcal{O}(1)$
 - \implies 'strongly–coupled quark–gluon plasma' (sQGP), or 'perfect liquid'

RHIC serves us the perfect liquid!

RHIC Scientists Serve Up "Perfect" Liquid

New state of matter more remarkable than predicted -- raising many new questions

Monday, April 18, 2005

TAMPA, FL -- The four detector groups conducting research at the Relativistic Heavy Ion Collider (RHIC) -- a giant atom "smasher" located at the U.S. Department of Energy's Brookhaven National Laboratory -- say they've created a new state of hot, dense matter out of the quarks and gluons that are the basic particles of atomic nuclei, but it is a state quite different and even more remarkable than had been predicted. In peer-reviewed papers summarizing the first three years of RHIC findings, the scientists say that instead of behaving like a gas of free quarks and gluons, as was expected, the matter created in RHIC's heavy ion collisions appears to be more like a liquid.

Still under debate ... more to come!

Quark-Gluon Plasma

Phase-diagram for QCD

• ... as explored by the expansion of the Early Universe ...

• ... and in the ultrarelativistic heavy ion collisions.

QCD thermodynamics: lattice

 \bullet With increasing temperature, the coupling g(T) decreases, so the exact result approaches towards the Stefan–Boltzmann limit

$$P_{SB} = \frac{\pi^2}{90} \left\{ 2(N_c^2 - 1) + \frac{21}{6} N_c N_f \right\}$$

- Can one understand this approach in perturbation theory ?
- For $T \gtrsim 2.5T_c$, $\varepsilon(T) \varepsilon_{SB}(T)$ is about 20%
- The first perturbative correction to $\varepsilon_{SB}(T)$, of $\mathcal{O}(g^2)$, is numerically about 20% as well !

QCD thermodynamics: perturbation theory

- ullet By itself, the $\mathcal{O}(g^2)$ seems to do a pretty good job. However...
- Successive perturbative approximations $\mathcal{O}(g^2)$, $\mathcal{O}(g^3)$, $\mathcal{O}(g^4)$, $\mathcal{O}(g^5)$ jump up and down, without any sign of convergence.

QCD thermodynamics: perturbation theory

- This problem appears for any field theory, including weakly coupled QED, or scalar ϕ^4 theory !
- In QCD, $\mathcal{O}(g^6)$ and higher cannot be computed in perturbation theory anymore (infinitely many diagrams)

Recall: **Debye screening**

 \bullet Thermal effect associated with dressing the propagator: $m_{\rm Debye} \sim gT$

• The electric gluon acquires a mass which is 'non-perturbative' at 'soft' momenta $k \sim gT$:

$$G_{00}(k) = \underbrace{\frac{1}{k^2 + m_{\rm D}^2}}_{\text{fine !}} = \underbrace{\frac{1}{k^2} \left[1 - \frac{m_{\rm D}^2}{k^2} + \left(\frac{m_{\rm D}^2}{k^2} \right)^2 \cdots \right]}_{\text{not fine !}}$$

Hard Thermal Loops

- ullet In a field theory at finite T, strict perturbation theory makes no sense
- The plasma develops collective phenomena ...
 - Debye screening, Landau damping, waves ('plasmons')...
 - ... which in general can be computed in perturbation theory, but whose effects are non-perturbative
 - ⇒ they need to be resummed to all orders

- Hard Thermal Loops : one loop diagrams with internal momenta $p \sim \mathcal{O}(T)$ ('hard') and external momenta $k_i \sim \mathcal{O}(gT)$ ('soft')
- This requires reorganizations of the perturbative expansion

HTL-resummed entropy

- 'Two-particle-irreducible' resummation of the HTL self-energies (J.-P. Blaizot, A. Rebhan, E. I., 2000)
- ullet Good agreement with the lattice data (Bielefeld) for $T\gtrsim 2.5T_c$

HTL-resummed pressure

- 'Screened perturbation theory' up to 3 loop order. (Andersen, Leganger, Strickland, Nan Su, 2011)
- Good convergence & good agreement with lattice data at 3-loop level

HTL-resummed pressure at 3 loop order

• Not an easy job though! ©

Jet quenching

How to probe the properties of the QGP in HIC ?

 Study the effects of the medium on the propagation of a 'hard probe', so like a jet

'Jets' vs. 'leading particles'

- A 'jet': the ensemble made by the 'leading particle' (a virtual parton which initiated the jet) and the products of its 'fragmentation'
- The definition of a 'jet' is also a matter of conventions ...
 - it depends upon the maximal rapidity (ΔY) and azimuthal $(\Delta \phi)$ separation between the particles that we associate with a given 'jet'
 - ... and also upon the jet reconstruction algorithm
- Jet reconstruction is particularly delicate in the context of HIC...

• ... and of course it requires a good, specialized, detector!

Jet quenching at RHIC

Studies of jet quenching at RHIC have focused on 'leading particles'

[Nucl.Phys.A783:249-260,2007]

Azimuthal correlations between the produced jets:

p+p or d+Au : a peak at $\Delta\Phi = 180^{\circ}$

Jet 'quenching' in nucleus-nucleus collisions

- The "away-side" jet has disappeared!
 absorbtion (or energy loss, or "jet quenching") in the medium
- The matter produced in a heavy ion collision is opaque high density, or strong interactions, ... or both

Nuclear modification factor at RHIC & the LHC

$$R_{\rm A+A} \equiv \frac{1}{A^2} \frac{\mathrm{d}N_{\rm A+A}/\mathrm{d}^2 p_{\perp} \mathrm{d}\eta}{\mathrm{d}N_{\rm p+p}/\mathrm{d}^2 p_{\perp} \mathrm{d}\eta}$$

- Strong suppression $(R_{AA} \lesssim 0.2)$ in central collisions
- Large energy loss in the medium

Jets in HIC at the LHC

 \bullet Pb+Pb collision at $\sqrt{s_{NN}}=2.76~$ TeV

Di-jet asymmetry (ATLAS)

- Central Pb+Pb: mono-jet events
- The secondary jet cannot be distinguished from the background: $E_{T1} \geq 100$ GeV, $E_{T2} > 25$ GeV

Di-jet asymmetry (CMS)

- Central Pb+Pb: the secondary jet is barely visible
- The jet energy has been redistributed in the transverse plane

Di-jet asymmetry (ATLAS)

• Event fraction as a function of the di-jet energy imbalance

$$A_{\rm J} = \frac{E_{T1} - E_{T2}}{E_{T1} + E_{T1}}$$

• ...and of the azimuthal angle $\Delta \phi$, for different centralities.

Di-jet asymmetry (ATLAS)

- Additional energy loss of 20 to 30 GeV due to the medium
- Typical event topology: still a pair of back-to-back jets
- The secondary jet loses energy without being deflected
- Medium-induced emissions of soft gluons at large angles

Medium-induced gluon radiation (BDMPS-Z)

ullet Additional radiation triggered by interactions in the medium (Baier, Dokshitzer, Mueller, Peigné, Schiff, Zakharov ~ 1995)

- A complicated problem: medium effects must be included to all orders
- Results (at least) qualitatively consistent with the LHC data!
- 2 fundamental concepts: formation time & momentum broadening

The formation time

- By the uncertainty principle, it takes some time to emit a gluon!
 - > the gluon must lose quantum coherence with respect to its source
- ullet Gluon with energy ω and transverse momentum k_{\perp} :
 - ightharpoonup the quark–gluon transverse separation b_\perp at the emission time au_f must be larger than the gluon transverse wavelength λ_\perp

$$b_{\perp} \simeq \theta \, au_f \, \gtrsim \, \lambda_{\perp} \simeq 1/k_{\perp}$$
 $k_{\perp} \simeq \omega \, \theta$

$$au_f \simeq rac{\omega}{k_\perp^2} \simeq rac{1}{\omega \theta^2}$$

Transverse momentum broadening

- The gluon receives random kicks from the plasma constituents
- Parton mean free path ℓ ($\ell \sim 1/g^2T$ for a QGP)
- Average (momentum) 2 transfer per scattering m_D^2 $(m_D \sim gT)$

$$\frac{\mathrm{d}\langle k_\perp^2 \rangle}{\mathrm{d}t} \simeq \frac{m_D^2}{\ell} \equiv \hat{q}$$
 'jet quenching parameter'

In-medium formation time

- The gluon acquires a (momentum) $^2 \sim \hat{q}$ per unit time ...
- ullet ... and hence a momentum $k_f^2 \simeq \hat{q}\, au_f$ during its formation
- \bullet The formation time τ_f is determined by the condition of quantum decoherence as $\tau_f \simeq \omega/k_f^2$

$$au_f \simeq \sqrt{rac{\omega}{\hat{q}}}\,, \qquad heta_f \equiv rac{k_f}{\omega} \simeq \left(rac{\hat{q}}{\omega^3}
ight)^{1/4}$$

- The smaller the energy ω , the shorter the formation time τ_f and the larger the formation angle θ_f !
- ullet This has the right characteristics to explain the LHC data ! $\sqrt{}$

The AdS/CFT correspondence

The evidence for strong coupling

- Three main experimental signatures:
 - ullet small viscosity–over–entropy (η/s) ratio ('perfect fluid')
 - ullet early thermalization $au_{
 m eq}\lesssim 1$ fm/c
 - strong 'jet quenching' (energy loss, momentum broadening)
- A rather shaky paradigm ...
 - a large elliptic flow v_2 can also be explained by a larger initial eccentricity together with a larger value for η/s
 - instead of early thermalization, it is enough to assume early expansion, like free streaming
 - so far, perturbative calculations were too crude to be convincing ... but progress is along the way !
- ... but a fascinating one !

The AdS/CFT correspondance

- A 'duality' (equivalence) between two very different theories
 - a conformal field theory (CFT) at strong coupling;
 - a string theory in Anti-de-Sitter (AdS) space-time at weak coupling.

(Maldacena, 97; Gubser, Klebanov, Polyakov, 98; Witten, 98)

- The CFT : $\mathcal{N}=4$ Supersymmetric Yang-Mills
 - ullet color gauge group $\mathsf{SU}(N_c)$
 - ullet conformal invariance \Longrightarrow fixed coupling g
 - no confinement
 - strong 't Hooft coupling : $\lambda \equiv g^2 N_c \gg 1 ~\&~ g^2 \ll 1$
- Is this a good model for QCD ??
- Perhaps better suited for studies of the quark-gluon plasma
 - deconfined, nearly conformal, relatively strong coupling

'Trace anomaly' in lattice QCD

• Remember: $T^{\mu\nu} = \mathrm{diag}\left(\varepsilon, P, P, P\right)$: \triangleright this would be traceless ($\varepsilon = 3P$) in a CFT

QCD:
$$\langle T^{\mu}_{\mu} \rangle \equiv \varepsilon - 3P \propto \beta(g)$$

- \bullet $(\varepsilon 3P)/\varepsilon_0 \lesssim 10\%$ for any $T \gtrsim 2T_c \simeq 400$ MeV
- $q \approx 1.5 \div 2 \implies \lambda \equiv q^2 N_c \simeq 6 \div 10$

The AdS/CFT correspondance (2)

- ullet The String Theory : type IIB in the AdS $_5 imes S^5$ space—time
- Finite–T plasma in the CFT \leftrightarrow adding a Black Hole in AdS₅ \triangleright a Black Hole has entropy and thermal (Hawking) radiation
- The strong 't Hooft coupling regime of the gauge theory:
 - $\lambda \equiv g^2 N_c \gg 1 \& g^2 \ll 1$ (large N_c)
- ... corresponds to the 'supergravity' regime of the string theory:
 - weak coupling & weak curvature
 - classical equations of motion in a curved space—time
- Well defined rules for computing quantum correlations in the CFT at strong coupling via semi-classical calculations in the string theory

AdS₅ Black Hole space-time

ullet AdS $_5$: our Minkowski world imes a 'radial' dimension χ

- 'radial', or '5th', coordinate : $0 \le \chi < \infty$
- the gauge theory lives at the Minkowski boundary $\chi = 0$
- finite temperature T: black hole horizon at $\chi=1/T$

$$S_{
m BH}\,=\,rac{{
m Horizon~area}}{4G_{10}}\Longrightarrow s\,\equiv\,rac{S_{
m BH}}{V_{3D}}\,=\,rac{\pi^2}{2}\,N_c^2T^3\,=\,rac{3}{4}\,s_0$$

AdS₅ Black Hole space-time

ullet AdS $_5$: our Minkowski world imes a 'radial' dimension χ

$$S_{
m BH} = rac{{
m Horizon~area}}{4G_{10}} \Longrightarrow s \equiv rac{S_{
m BH}}{V_{3D}} = rac{\pi^2}{2}\,N_c^2T^3 = rac{3}{4}\,s_0$$

Viscosity over entropy density ratio

(Policastro, Son, Starinets, 2001)

- Viscosity = the response of a fluid under shear forces ...
- ... hence, to a gravitational wave :

$$\eta = \lim_{\omega \to 0} \frac{1}{2\omega} \int dt d^3 \boldsymbol{x} e^{-i\omega t} \langle [T_{xy}(t, \boldsymbol{x}), T_{xy}(0, \boldsymbol{0})] \rangle_{\boldsymbol{T}}$$

- = the absorbtion cross section for a low-energy graviton
- Absorption cross section = area of horizon (known in GR)
- Entropy is also proportional to the area of the horizon

$$rac{\eta}{s}
ightarrow rac{\hbar}{4\pi}$$
 as $\lambda
ightarrow \infty$

• Universality follows from properties of black hole horizons

Heavy Ion Collisions

Ultrarelativistic Heavy Ion Collision in 4D ←→
 The scattering between two gravitational shock–waves in AdS₅

Thermalization ←→ Formation of a BH horizon

Thermalization from shock—wave scattering

(Chesler and Yaffe, 2010)

- The remnants of the two shock waves move away from each other, but with velocities v < 1.
- The pressure shows isotropisation.

Heavy Quark in a strongly-coupled plasma

- Heavy quark in 4D \longleftrightarrow 'Trailing string' in AdS₅ BH
- ullet Energy loss $\mathrm{d}E/\mathrm{d}t \longleftrightarrow$ Energy flux down the string

Herzog, Karch, Kovtun, Kozcaz, and Yaffe; Gubser (2006) Casalderrey–Solana, Teaney (2006); Giecold, E.I., Al Mueller (2009)

Energy loss by the heavy quark

- If the quark velocity is larger than the speed of sound ($c_s=1/3$) \implies Mach cone (Chesler and Yaffe, 2007)
- The experimental evidence at RHIC is still under debate

Medium-induced radiation at strong coupling

Remember: Weak coupling: thermal rescattering

- Strong coupling: medium induced parton branching
- There are no plasma constituents to scatter off!

 ⇒ at strong coupling, the plasma looks like a jelly, without pointlike constituents!
- All the partons branch down to very small values of x:
 no 'valence quarks' (Hatta, E.I., Mueller, 2008)

There are no jets at strong coupling!

- e^+e^- annihilation in COM frame: $q^\mu=(\omega,0,0,0)$
- Typical final state at weak coupling : a pair of back to back jets with high momenta $k \simeq \omega/2$

• Typical final state at strong coupling : an isotropic distribution of many soft particles $(k_i \sim \omega_i \sim \Lambda)$ (Hatta, Mueller & E.I, 08; Hofman and Maldacena, 2008)

Instead of conclusions: Why gravity?

- Why should gravity describe gauge theory at strong coupling?
- OPE for DIS: Partons ←→ 'twist-2' operators
- The operators depend upon the resolution scale

- $\lambda \to \infty$: rapid evolution \Rightarrow all operators are suppressed
- ullet ... with one exception: the energy momentum tensor $T^{\mu
 u}$ \Longrightarrow the effective theory for scattering must be gravity!