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1. Intro and QCD fundamentals

2. QCD in the final state

3. QCD in the initial state

4. From accurate QCD to useful QCD

5. Advanced QCD with applications at the LHC
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New set of questions

1. How can we identify a cross sections for producing quarks and gluons with 
a cross section for producing hadrons? 

2. Given the fact that free quarks are not observed, why is the computed Born 
cross section so good?

3. Are there other calculable, i.e., that do not depend on the non-perturbative 
dynamics (like hadronization), quantities besides the total cross section? 
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Real

Virtual

Anatomy of a NLO calculation

σ
NLO =

∫
R

|Mreal|
2
dΦ3 +

∫
V

2Re (M0M
∗

virt) dΦ2 = finite!

∫
ddk

(2π)d
. . .

The KLN theorem states that divergences appear because some of the final state are physically 
degenerate but we treated them as different. A final state with a soft gluon is nearly degenerate with 
a final state with no gluon at all (virtual).
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p̄, j

p, i

k, a

p̄, j

p, i

k, a

γ∗, Z γ∗, Z

A = ū(p)!ε(−igs)
−i

!p + !k
Γµv(p̄)ta + ū(p)Γµ

i

!p̄ + !k
(−igs)!εv(p̄)ta

= −gs

[

ū(p)"ε("p + "k)Γµv(p̄)

2p · k
−

ū(p)Γµ("p̄ + "k)"εv(p̄)

2p̄ · k

]

ta

The denominators                              give singularities for collinear (cos θ →1) or soft (k0 →0)  
emission. By neglecting k in the numerators and using the Dirac equation, the amplitude simplifies and 
factorizes over the Born amplitude:

2p · k = p0k0(1 − cos θ)

ABorn = ū(p)Γµv(p̄)Asoft = −gst
a

(

p · ε

p · k
−

p̄ · ε

p̄ · k

)

ABorn

Factorization: Independence of long-wavelength (soft) emission form the hard (short-distance) 
process. Soft emission is universal!!

Let’s consider the real gluon emission 
corrections to the process e+e- →qq.
The full calculation is a little bit tedious, 
but since we in any case interested in the 
issues arising in the infra-red, we already 
start in that approximation.

Anatomy of a NLO calculation
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0 ≤ x1, x2 ≤ 1, and x1 + x2 ≥ 1

Two collinear divergences and a soft one.  Very often you find the integration over phase space 
expressed in terms of x1 and x2, the fraction of energies of the quark and anti-quark:

x1 = 1 − x2x3(1 − cos θ23)/2

x2 = 1 − x1x3(1 − cos θ13)/2

x1 + x2 + x3 = 2

collinear soft

collinear

dσ
VIRT
qq̄ = −σ

Born
qq̄ CF

αS

2π

∫
d cos θ

′
dk′

0

k′

0

1

1 − cos2 θ
2δ(k′

0)[δ(1−cos θ
′)+δ(1+cos θ

′)]+. . .

So we can now predict the divergent part of the virtual  
contribution, while for the finite part an explicit calculation 
is necessary:

Anatomy of a NLO calculation
By squaring the amplitude we obtain:

σqq̄g = CF g2
sσBorn

qq̄

∫
d3k

2k0(2π)3
2

p · p̄

(p · k)(p̄ · k)

= CF
αS

2π
σ

Born
qq̄

∫
d cos θ

dk0

k0

4

(1 − cos θ)(1 + cos θ)

REAL
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Anatomy of a NLO calculation

Summary:

σREAL + σVIRT = ∞−∞ =?

Solution: regularize the “intermediate” divergences, by giving a gluon a mass (see later) or going to 
d=4-2ε dimensions.� 1 1

1− x
dx = − log 0

regularization→
� 1 (1− x)−2�

1− x
dx = − 1

2�

lim
�→0

(σREAL + σVIRT) = CF
3

4

αS

π
σBorn

R1 = R0

(

1 +
αS

π

)

as presented before

σREAL = σBornCF
αS

2π

�
2

�2
+

3

�
+

19

2
− π2

�

σVIRT = σBornCF
αS

2π

�
− 2

�2
− 3

�
− 8 + π2

�

This gives:
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1. How can we identify a cross sections for producing (few) quarks 
and gluons with a cross section for producing (many) hadrons? 

2. Given the fact that free quarks are not observed, why is the 
computed Born cross section so good?

Answers:    

The Born cross section IS NOT the cross section for producing q qbar, since the 
coefficients of the perturbative expansion are infinite!  But this is not a problem 
since we don’t observe q qbar and nothing else. So there is no contradiction here.

On the other hand the cross section for producing hadrons is finite order by order 
and its lowest order approximation IS the Born.

A further insight can be gained by thinking of what happens in QED and what is 
different there. For instance soft and collinear divergence are also there. In QED one 
can prove that cross section for producing “only two muons” is zero...

New set of questions
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Infrared divergences

Even in high-energy, short-distance regime, 
long-distance aspects of QCD cannot be 
ignored. 

This is because there are configurations in 
phase space for gluons and quarks, i.e. when 
gluons  are soft and/or when are pairs of 
partons are collinear.

⇒

∫
ddk

(2π)d

1

k2(k + p)2(k − p̄)2

also for soft and collinear or collinear configurations associated to the virtual partons with 
the region of integration of the loop momenta.

Asoft = −gst
a

(

p · ε

p · k
−

p̄ · ε

p̄ · k

)

ABorn
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k+
!

√
s/2

k−

! (kT + 2k+k−)
√

s/2

x+
! 1/k−

x−

! 1/k+

large

small

large

small

travel a long 
distance along the 

light-cone

Space-time picture of IR singularities
The singularities can be understood in terms of light-cone coordinates. Take pμ=(p0, p1, p2, p3) and 
define p±=(p0±p3)/√2. Then choose the direction of the + axis as the one of the largest between + 
and - . A particle with small virtuality travels for a long time along the x+  direction.
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Infrared divergences

Infrared divergences arise from interactions that happen a long time after the 
creation of the quark/antiquark pair.

When distances become comparable to the hadron size of ~1 Fermi, quasi-
free partons of the perturbative calculation are confined/hadronized non-
perturbatively.

We have seen that in total cross sections such divergences cancel. But what 
about for other quantities?

Well, obviously the only possibility is to try to use the pQCD calculations for 
quantities that are not sensitive to the to the long-distance physics.

Can we formulate a criterium that is valid in general?

YES!  It is called INFRARED SAFETY
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Infrared-safe quantities

DEFINITION: quantities are that are insensitive to soft and collinear 
branching. 

For these quantities, an extension of the general theorem (KLN) exists 
which proves that infrared divergences cancel between real and virtual or 
are simply removed by kinematic factors. 

Such quantities are determined primarily by hard, short-distance physics. 
Long-distance effects give power corrections, suppressed by the inverse 
power of a large momentum scale (which must be present in the first 
place to justify the use of PT). 

Examples: 
1. Multiplicity of gluons is not IRC safe
2. Energy of hardest particle is not IRC safe
3. Energy flow into a cone is IRC safe
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q

q

Event shape variables

pencil-like spherical
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Event shape variables

The idea is to give more information than just 
total cross section by defining “shapes” of an 
hadronic event (pencil-like, planar, spherical, etc..)

In order to be comparable with theory it MUST 
be IR-safe, that means that the quantity should not 
change if one of the parton “branches”  pk →pi + pj 

Examples are: Thrust, Spherocity, C-parameters,...

Similar quantities exist for hadron collider too, but 
they much less used.
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Is the thrust IR safe?

T = max!n

∑
i
!pi · !n∑
i
!pi

Contribution from a particle with momentum going to zero drops out.

Replacing one particle with two collinear ones does not change the thrust:

|(1− λ)�pk · �u|+ |λ�pk · �u| = |�pk · �u|

|(1− λ)�pk|+ |λ�pk| = |�pk|
and
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1

σ

dσ

dT
= CF

αS

2π

[

2(3T 2
− 3T + 2)

T (1 − T )
log

(

2T − 1

1 − T

)

−

3(3T − 2)(2 − T )

1 − T

]

.

Calculation of event shape variables: Thrust

The values of the different event-shape variables for different topologies are

O(αS2) corrections (NLO) are also 
known. Comparison with data provide 
test of QCD matrix elements, through 
shape distribution and measurement of 
αS from overall rate. Care must be 
taken around T=1 where 
(a) hadronization effects become large 
and 
(b) large higher order terms of the 
form αSN [log2N-1 (1-T)]/(1-T) need to 
be resummed. 
At lower T multi-jet matrix element 
become important. 
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Angular correlations also provide interesting information about the properties of the matrix elements in 
QCD. One of these quantities is the so-called Bengtsson-Zerwas angle. It is the angle between planes of 
the two lowest and the two highest energy jets.

p1

p2

p4

p3

χBZ

This quantity gives information on the presence 
and characteristics of the three-gluon vertex. 

Intermezzo: how did we “see” the 3g vertex?

17



   2011 School of High-Energy Physics Fabio Maltoni

q

q

Jet algorithms

2-jets 3-jets 4-jets

Jets are in the eye of the beholder!

GavinSalam®

same event!!
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Jet algorithms

jet 1 jet 2

LO partons

Jet Def n

jet 1 jet 2

Jet Def n

NLO partons

jet 1 jet 2

Jet Def n

parton shower

jet 1 jet 2

Jet Def n

hadron level

π π

K

p φ

GavinSalam®
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Infrared safety and jet algo’s

jet 2
jet 1jet 1jet 1 jet 1

αs x (+ )∞
n

αs x (− )∞
n

αs x (+ )∞
n

αs x (− )∞
n

Collinear Safe Collinear Unsafe

Infinities cancel Infinities do not cancel

GavinSalam®
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•The precise definition of a procedure how to cut be three-
jet (and multi-jet) events is called “jet algorithm”.

•Which jet algorithm to use for a given measurement/
experiment needs to be found out. Different algorithms have 
ver y different behaviors both exper imentally and 
theoretically. Of course, it is important that a complete 
information is given on the jet algorithm when experimental 
data are to be compared with theory predictions!

•We i n b e r g - S t e r m a n j e t s ( i n t u i t i v e d e fi n i t i o n ) :                     
“An event is identified as a 2-jets if one can find 2 cones with 
opening angle δ that contain all but a small fraction εE of the 
total energy E”.

Jet algorithms
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Jets (top-down) at e-e+

Let’s see when the various contributions add up to 
the Sterman-Weinberg 2-jet cross section:

! The Born cross section contributes to the 2-jet 
cross section, INDEPENDENTLY of ε and δ.

!The SAME as above for the virtual corrections.

!The real corrections when k0<εE (soft).

!The real corrections when k0>εE AND θ<δ
   (collinear).

Born + Virtual + Real (a) + Real (b) = σ
Born

− σ
Born 4αSCF

2π

∫ E

εE

dk0

k0

∫ π−δ

δ

d cos θ

1 − cos2 θ

As long as  δ and ε are not too small, we find that the fraction of 2-jet cross section is almost 1! 
At high energy most of the events are two-jet events. As the energy increases the jets become 
thinner. 

= σBorn

�
1− 4αSCF

2π
log � log δ

�
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In our example 
0<x1,x2<1-y, x1+x2>1+y     
y<1/3  

A very simple jet iterative algorithm
(bottom-up)

1. Consider e+e- →N partons
2. Consider all pairs i and j and 
calculate
    IF 

min (pi + pj)2 < ycut s 
THEN  
replace the two partons i,j by pij 

= pi + pj   and decrease N → 
N-1

3.  IF N=1 THEN stop ELSE goto 2.
4.  N = number of jets in the event 
using the “scale” y. 

The result of the algo can be calculated 
analytically at NLO: 

σ2j = σBorn

�
1− αSCF

π
log2 y + . . .

�

σ3j = σBornαSCF

π
log2 y + . . .
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Jet algorithms

jet 1 jet 2

LO partons

Jet Def n

jet 1 jet 2

Jet Def n

NLO partons

jet 1 jet 2

Jet Def n

parton shower

jet 1 jet 2

Jet Def n

hadron level

π π

K

p φ

GavinSalam®
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Measure (dimensionful):

dij = min(p2ti, p
2
tj)

∆R2
ij

R2

diB = p2ti

The algorithm proceeds by searching for the smallest of the dij and the diB. 

If it is a then dij particles i and j  are recombined* into a single new particle. 

If it is a diB then i is removed from the list of particles, and called a jet.

This is repeated until no particles remain.

kT algorigthm “undoes” the QCD shower

kT  algorithm at hadron colliders

*a 4-momenta recombination scheme is needed (E-scheme)

GavinSalam®
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Comments:

If a particle i is separated by more than R from all other particles in the event then it will have diB < dij 
for all j and so it will form a jet on its own.

For the kT algorithm, the jets have irregular edges, because many of the soft particles cluster together 
early in the recombination sequence

As with cone algorithms, arbitrarily soft particles can 
form jets.  It is therefore standard to place a  pTMIN cutoff 
on the jets one uses for `hard' physics.

R in the kT algorithm plays a similar role to R in cone 
algorithms: if two particles i and j are within  R of each 

other, i.e., ΔRij < R, then dij < diB, djB and so i and j 
will prefer to recombine rather than forming separate 
jets.

GavinSalam®
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Irregular jets are an undesired feature kT algorithm.

1. Acceptance corrections are harder to calculate.
2. Underlying event corrections depend on the area.
3. Non-linear dependence on soft particles.

Energy calibrations for the jet algorithm are more difficult.

The kT algorithm that is attractive because it assigns a 
clustering sequence to the particles within the jet. 
One can therefore “undo”  the clustering and look inside the jet.

This has been exploited in a range of QCD studies  and also in discussions of searches of hadronic
decays of boosted massive particles such as W, H, or Z bosons, top quarks, or new particles.

Jet substructure studies are also often carried out with the
Cambridge/Aachen (C/A) algorithm which is like the kT but with pTj=1 

GavinSalam®

Comments:

27

kT  algorithm at hadron colliders



   2011 School of High-Energy Physics Fabio Maltoni

Anti-kT  algorithm

Measure (dimensionful):

dij =
1

max(p2ti, p
2
tj)

∆R2
ij

R2

diB =
1

p2ti

Objects that are close in angle prefer to cluster early, but that clustering tends to occur with a hard 
particle (rather than necessarily involving soft particles). This means that jets `grow' in concentric 
circles out from a hard core, until they reach a radius R, giving circular jets.

Unlike cone algorithms the `anti-kT' algorithm is collinear (and infrared) safe.

This, (and the fact that it has been implemented efficiently in FastJet, has led to be the default jet 
algorithm at the LHC.

It’s a handy algorithm but it does not provide internal structure information.

GavinSalam®
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What jet algo should I choose?

1/
N

 d
N

/d
bi

n

dijet mass [GeV]

 0

 0.01

 0.02

 0.03

 0.04

 1900  2000  2100

kt, R=0.5
Qw

f=0.13 = 152 GeV

dijet mass [GeV]
 1900  2000  2100

kt, R=1.0
Qw

f=0.13 = 80 GeV gg 2 TeV

dijet mass [GeV]
 1900  2000  2100

SISCone, R=1.0, f=0.75
Qw

f=0.13 = 58 GeV

1/
N

 d
N

/d
bi

n

dijet mass [GeV]

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 80  100  120

kt, R=1.0
Qw

f=0.12 = 13.0 GeV

dijet mass [GeV]
 80  100  120

kt, R=0.5
Qw

f=0.12 = 8.3 GeV

qq 100 G
eV

dijet mass [GeV]
 80  100  120

SISCone, R=0.5, f=0.75
Qw

f=0.12 = 7.4 GeV

It depends on what are you looking (Singlet or colored, resonance decaying to gg, qq, bb) for and 
which observable you want to accurately measure : see a sharp peak or measure the position of the 
peak...

H

Z

g

g

q

q

GavinSalam®
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q

q

More exclusive quantities

Number of particles in the final state?
Number of particles per jet?

Jet mass?
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?γ*,Z
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σ2j = σBorn

�
1− αSCF

π
log2 y +

1

2!

�
αSCF

π
log2 y

�2

+ . . .

�
= σBorne−

αSCF
π log2 y

Assuming “abelian” gluons one finds that something magic happens at higher orders: 

σ3j = σBornαSCF

π
log2 y e−

αSCF
π log2 y

σnj = σBorn 1

n!

�
αSCF

π
log2 y

�n

e−
αSCF

π log2 y

...

The number of jets is distributed as a Poisson with average (and the full QCD result):

< nj >= 2 +
αSCF

π
log2 y < nj >QCD=

CF

CA
exp

�
αSCA

2π
log2

1

y

More exclusive quantities
(AKA, the power of exponentation)
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Identifying one particle with one jet at resolution scale of Λs  one obtains an estimate for 
the average number of particles in an event (multiplicity):

< np >=
αSCF

π
log2

s

Λ2
s

=
CF

πb0
log

s

Λ2
s

ie. the multiplicity grows with the log of the com energy.

Finally the jet mass can also be easily estimated by integrating the cross 
sections over two emispheres identified by the thrust axis:

< m2
j >=

1

2σBorn

��

(I)
(q + k)2dσg +

�

(II)
(q + k)2dσg

�
=

αSCF

π
s

This result gives the correct scaling of the jet mass, mj ∼√αs Ej , which is also valid at 
hadron colliders (replacing E with pt)!

More exclusive quantities
(AKA, the power of exponentation)

< np >QCD= exp

�
2CA

πb0
log

s

Λs
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Summary

1. We have studied the problem of infrared divergences in the calculation of the 
fully inclusive cross section, with the help of the soft limit. 

2. We have introduced the concept of an Infrared Safe quantity, i.e. an observable 
which is both computable at all orders in pQCD and has a well defined 
counterpart at the experimental level. 

3. We have discussed more exclusive quantities, from shape functions to fully 
exclusive quantities and compared them with e+ e- data. We have introduced 
the method of exponentiation.

4. We have introduced the idea of jet algorithms (top-down  and bottom-up) 
and discussed the most recent algorithms.
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