
Measurement of the transverse momentum distribution of $Z/\gamma*$ bosons in p-p collisions at $\sqrt{s} = 7 \text{TeV}$ with the ATLAS detector

Discussion group A Conference Centre

What are we measuring?

- Due to QCD initial state radiation in p-p collisions Z/ γ* bosons can be produced with a momentum component transverse to the beam axis
- Simple di-lepton signatures can be identified with little background and allow a precise reconstruction of the boson trajectory and P_T :

What are we measuring?

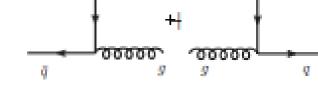
 Measure the normalised transverse momentum distribution – defined as:

$$1/\sigma_{FID} \times d\sigma_{FID} / d(P_T)$$

- − Where σ_{FID} = the measured inclusive cross-section for pp → Z/γ* + X multiplied by the branching ratio of Z/γ* → I⁺I⁻ (within the detector fiducial acceptance)
- Results will be compared to those of:
 - Theoretical QCD calculations
 - The output of various event generators

Why is it important?

- W mass measurement uses lepton P_T directly:
 - $M_T = (2p_T^l p_T^v (1 \cos \theta_{lv}))^{\frac{1}{2}}$
 - Can use Z P_T measurement (uncertainty due to hadronic recoil, measured accurately here)
 - W mass important in own right as input to ρ parameter (handle on new physics and Higgs mass):


$$- \rho \approx \frac{M^2 Z}{M^2_W \cos^2 \theta_W} = 1.0008 + 0.0017 - 0.0007$$

- ρ is 1 at tree level
- Validation of generators and tunes, input for PDFs
- Measurement currently being improved: larger dataset and better discrimination

QCD predictions

Theory calculation

- Perturbative QCD: $\alpha_S(Q^2>\Lambda_S^2) < 1$

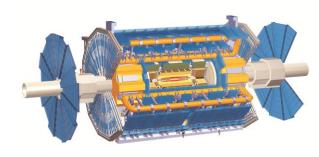
- We can calculate differential cross section, but divergent for $p_T \rightarrow 0$: **FEWZ**
- Soft and collinear parton emission:
 - Divergencies not calculable at fixed order, lead to terms $\sim \log^{2N}(Q^2/Q_0^2)$
 - Combination of pQCD with next-to-next-to-leading-log (NNLL) resummation: <u>RESBOS</u>
 - similar treatment in parton shower

q goodsoo g

Event generation

- − <u>PYTHIA</u>, <u>HERWIG</u>: pure parton shower, but weight up hard emissions $O(\alpha_s^0) \rightarrow O(\alpha_s^1)$ (with MRST2007LO* PDF)
- POWHEG, MC@NLO: merge NLO pQCD with parton shower from PYTHIA / HERWIG (with CTEQ6.6 PDF)
- ALPGEN, SHERPA: pQCD calculations at LO for emissions of ≤5 partons, matched with corresponding parton shower evolution (with CTEQ6.6 / CTEQ6L1 PDF)

The ATLAS detector


General-purpose experiment at the Large Hadron Collider collecting proton-proton collisions at $\sqrt{s}=7\text{TeV}$

Reconstruction of leptons relies mainly on:

Tracking systems

EM calorimeter

Muon spectrometer

Spectrometer Muon Neutrino Calorimeter Proton The dashed tracks Neutron are invisible to the detector Electromagnetic Solenoid magne Radiation Tracking Pixel/SCT

A 3-level trigger system reduces the overall event rate

2 triggers used in this analysis:

- single muon with *p_T>15GeV*
- single electron with *p_T>13GeV*

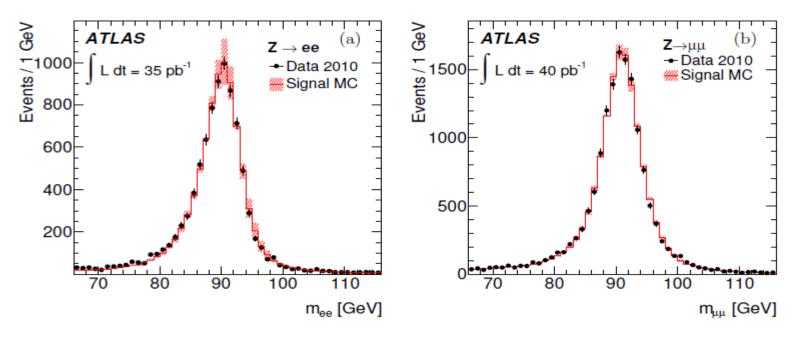
Similar trigger and offline selection

- Trigger efficiencies were estimated in data using Z/γ*→I⁺I⁻ candidate events tag-and-probe method
 - > 95% across range studied

Offline event selection

- Only data flagged as good quality used
- Common high level cuts:
 - At least one primary vertex composed from at least 3 tracks
 - Invariant mass di-lepton pair 66-116 GeV (M₂ ~ 91GeV)

Lepton channel cuts:


Cut applied	Electron channel	Muon channel
Transverse energy	>20GeV	-
Transverse momentum	-	>20GeV
lηl	<2.4	<2.4

- Track quality applied for both channels (χ^2 , impact parameter PV)
- Shower shape ID used to confirm electron showers
- Isolated muons reconstructed rejects jet backgrounds

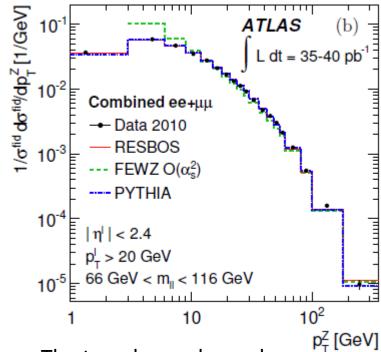
Selected events

 Invariant mass distribution plots: real data candidates compared to Pythia simulation

- 8923 $Z/\gamma^* \rightarrow e^+e^-$ and 15060 $Z/\gamma^* \rightarrow \mu^+\mu^-$ candidates
- Background contributions negligible (and hence invisible!)

Results: Unfolding P_T^Z

The unfolding procedure corrects the measured distribution to the underlying "true"


distribution. It accounts for:

- Lepton selection efficiencies
- Detector effects
- QED final state radiation

• Bin by-bin unfolding:

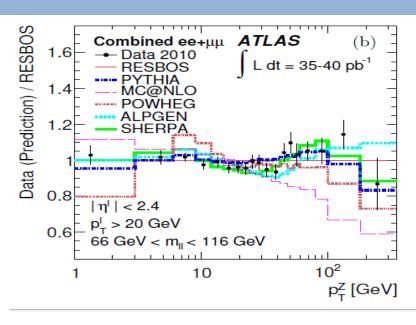
$$C_i = \frac{N_{MC,Truth}}{N_{MC,Reco}}$$

$$\frac{\Delta \sigma^{i}}{\Delta P_{T}^{Z}} = \frac{N_{sel}^{i} - N_{bkg}^{i}}{L \Delta P_{T}^{Z}} \cdot C_{i}$$

The two decay channels are combined to get the normalized differential cross section shown above.

Systematics/backgrounds


- The unfolding bin-by-bin correction factors are subject to several sources of systematic error
- Systematics evaluated by recalculating bin-by-bin factors using bootstrap method


Systematic contribution	% effect on C _i
Lepton efficiencies	1-5%
Simulation statistics	0-4%
Energy/momentum scales	0-3%

- Smaller effects produced by channel specific backgrounds, event pile-up and QED final state radiation
- N.B. More complex matrix unfolding methods suffer from a lack of statistics but may be suitable for larger data-sets in the future

Results: MC comparisons

- Good description for the entire PT range using RESBOS.
- At PT> 18 GeV, the central FEWZ O($\alpha_{\rm S}$) prediction underestimates the data by about 10%, which is comparable to the size of the combined experimental and theoretical uncertainty.
- Good agreement with Sherpa, Alpgen, and Pythia
- MC@NLO and POWHEG perform less well.

Conclusions

- $Z/\gamma^* P_T$ differential distribution measured up to P_T = 350GeV in p-p collisions at 7 TeV
- The entire spectrum is well described by RESBOS, compatible with FEWZ (within uncertainties)
- There is also excellent agreement with the SHERPA, ALPGEN and Pythia event generators – although other generators perform less well
- Except for at the lowest P_T values, measurement of the spectrum is limited by statistics and NOT systematics – continual improvement to these already impressive results is foreseen in the near future
- Results prove that we have a good handle on the underlying QCD at NLO

Backup: Fit quality

Generator/MC	$\chi^2/ndof$
RESBOS (CTEQ 6.6)	21.7/19
ALPGEN+HERWIG+JIMMY (CTEQ6L1)	31.9/19
SHERPA (CTEQ 6.6)	16.8/19
PYTHIA (MRSTL0*2007)	17.9/19
MC@NLO + PYTHIA	116.9/19
POWHEG	100.4/19