Search for $B_S^0 \to \mu \mu$ and $B^0 \to \mu \mu$ at CMS

ESHEP Student Presentations
Group C

Motivation

- Decay rate highly suppressed in SM
- Enhancement originating in BSM physics
- Small theoretical uncertainties + clean signature

b W 2HDM $Z H^0 h^0$ B_s^0 S **MSSM** u

s(d)

2

Previous Measurements

- Current sensitivity still orders of magnitudes over SM predictions
- Excess measured in Tevatron II dataset recently reported by CDF

CMS detector

Component	Characteristics	resolutions
Pixel	3/2 Si layers	$\delta_z \approx 20 \mu \text{m}, \delta_\phi \approx 10 \mu \text{m}$
Tracker	10/12 Si strips	$\delta(p_{\perp})/p_{\perp} \approx 1\%$
ECAL	$PbWO_4$	$\delta E/E \approx 3\%/\sqrt{E} \oplus 0.5\%$
HCAL (B)	Brass/Sc, $> 7.2\lambda$	$\delta E/E \approx 100\sqrt{E}\%$
HCAL (F)	Fe/Quartz	$\delta(E_T) \approx 0.98 \sqrt{\sum E_T}$
Magnet	3.8 T solenoid	, <u> </u>
Muons	DT/CSC + RPC	$\delta(p_\perp)/p_\perp pprox 10\%$ (STA)

CMS detector

Component	Characteristics	resolutions
Pixel	3/2 Si layers	$\delta_z \approx 20 \mu \text{m}, \delta_\phi \approx 10 \mu \text{m}$
Tracker	10/12 Si strips	$\delta(p_{\perp})/p_{\perp} \approx 1\%$
ECAL	PbWO $_4$	$\delta E/E \approx 3\%/\sqrt{E \oplus 0.5\%}$
HCAL (B)	Brass/Sc, $> 7.2\lambda$	$\delta E/E \approx 100\sqrt{E}\%$
HCAL (F)	Fe/Quartz	$\delta(E_T) \approx 0.98 \sqrt{\sum E_T}$
Magnet	3.8 T solenoid	• —
Muons	DT/CSC + RPC	$\delta(p_\perp)/p_\perp pprox 10\%$ (STA)

Discriminating Variables

Significance of Flight Distance $\frac{I_{3D}}{\sigma I_{3D}}$

Distance between PV and dimuon vertex divided by its uncertainty

Pointing angle α_{3D}

Angle between p(B) and vector between PV and dimuon vertex

Distance of Closest Approach d'ca

3D distance of closest approach between the two muons

Isolation
$$I = \frac{p_T(B)}{\sum_{track} p_T(track)}$$

$$p(\mu_1) \qquad p(B) = p(\mu_1) + p(\mu_2)$$

$$p(\mu_2) \qquad p(\mu_2)$$

$$p(\mu_2) \qquad p^{trk}_T > 0.9 GeV$$

$$p^{trk}_T > 0.9 GeV$$
background

Fraction of track p_T carried by the B meson

- We measure $\mathcal{B}(\mathrm{B_s^0} \to \mu^+ \mu^-) = \frac{N_\mathrm{S}}{N_\mathrm{obs}^{\mathrm{B}^+}} \frac{f_\mathrm{u}}{f_\mathrm{s}} \frac{\varepsilon_\mathrm{tot}^{\mathrm{B}^+}}{\varepsilon_\mathrm{tot}} \mathcal{B}(\mathrm{B}^+)$
 - N_s: events in the signal region (background subtraction)
 - $N^{\text{B+}}: B^{\pm} \to J/\psi \to \mu \mu)K^{\pm}(m_{\mu\mu K} \text{ fit})$
 - \mathcal{E}_{tot} : total selection efficiencies
 - $-f_s/f_u = 0.282 \pm 0.037$, $B(B^+) = (6.0\pm0.2)\times10^{-5}$ [PDG]
- Normalisation sample from $B^{\pm} \to J/\psi \to \mu \mu K^{\pm}$
 - minimise uncertainties on b-bbar cross section and luminosity
- Control sample from $B_S^0 \to J/\psi \to \mu \mu \phi \to K^+K^$
 - signal MC validation
- Blind analysis separating barrel and endcap regions,

- We measure $\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = \frac{(N_S)}{N_{\rm obs}^{B^+}} \frac{f_{\rm u}}{f_{\rm s}} \frac{\varepsilon_{\rm tot}^{B^+}}{\varepsilon_{\rm tot}} \mathcal{B}(B^+)$
 - -(N_s) events in the signal region (background subtraction)
 - $-N^{\text{B+}}:B^{\pm} \to J/\psi \to \mu \mu)K^{\pm}(m_{\mu\mu K} \text{ fit})$
 - ε_{tot} : total selection efficiencies
 - $-f_s/f_u = 0.282 \pm 0.037$, $B(B^+) = (6.0\pm0.2)\times10^{-5}$ [PDG]
- Normalisation sample from $B^{\pm} \to J/\psi \to \mu \mu K^{\pm}$
 - minimise uncertainties on b-bbar cross section and luminosity
- Control sample from $B_S^0 \to J/\psi \to \mu \mu \phi \to K^+K^$
 - signal MC validation
- Blind analysis separating barrel and endcap regions.

- We measure $\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = \frac{N_S}{(N_{obs}^{B^+})} \frac{f_u}{f_s} \frac{\varepsilon_{tot}^{B^+}}{\varepsilon_{tot}} \mathcal{B}(B^+)$
 - N: events in the signal region (background subtraction) NB+: $B^\pm \to J/\psi \to \mu \mu K^\pm$ (m_{µµK} fit)

 - ε_{tot} : total selection efficiencies
 - $-f_s/f_{11} = 0.282 \pm 0.037$, $B(B^+) = (6.0\pm0.2)\times10^{-5}$ [PDG]
- Normalisation sample from $B^{\pm} \to J/\psi \to \mu \mu K^{\pm}$
 - minimise uncertainties on b-bbar cross section and luminosity
- Control sample from $B_s^0 \to J/\psi \to \mu \mu \phi \to K^+K^-$
 - signal MC validation
- Blind analysis separating barrel and endcap regions.

- We measure $\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = \frac{N_S}{N_s^{B^+}} \frac{f_u(\varepsilon_{tot}^{B^+})}{f_s(\varepsilon_{tot}^{B^+})} \mathcal{B}(B^+)$
 - N_s: events in the signal region (background subtraction)
 - $N^{B+}: B^{\pm} \rightarrow J/\psi \rightarrow \mu \mu)K^{\pm}(m_{uuK} fit)$

 - ε_{tot}) total selection efficiencies $f_s/f_{\text{II}} = 0.282 \pm 0.037$, $B(B^+) = (6.0 \pm 0.2) \times 10^{-5}$ [PDG]
- Normalisation sample from $B^{\pm} \to J/\psi \to \mu \mu K^{\pm}$
 - minimise uncertainties on b-bbar cross section and luminosity
- Control sample from $B_s^0 \to J/\psi \to \mu \mu \phi \to K^+K^$
 - signal MC validation
- Blind analysis separating barrel and endcap regions

- We measure $\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = \frac{N_S}{N_s^{B^+}} \underbrace{\frac{f_u}{f_s}}_{\epsilon_{tot}} \underbrace{\frac{g_s^{B^+}}{g_{tot}}}_{\epsilon_{tot}} \mathcal{B}(B^+)$
 - N_s: events in the signal region (background subtraction)
 - $N^{B+}: B^{\pm} \rightarrow J/\psi \rightarrow \mu \mu)K^{\pm}(m_{uuK} fit)$

 - ε_{tot} : total selection efficiencies (f_s/f_u) = 0.282 ± 0.037, $(B(B^+))$ = $(6.0\pm0.2)\times10^{-5}$ [PDG]
- Normalisation sample from $B^{\pm} \to J/\psi \to \mu \mu K^{\pm}$
 - minimise uncertainties on b-bbar cross section and luminosity
- Control sample from $B_s^0 \to J/\psi \to \mu \mu \phi \to K^+K^-$
 - signal MC validation
- Blind analysis separating barrel and endcap regions.

- We measure $\mathcal{B}(\mathrm{B_s^0} \to \mu^+ \mu^-) = \frac{N_\mathrm{S}}{N_\mathrm{obs}^{\mathrm{B}^+}} \frac{f_\mathrm{u}}{f_\mathrm{s}} \frac{\varepsilon_\mathrm{tot}^{\mathrm{B}^+}}{\varepsilon_\mathrm{tot}} \mathcal{B}(\mathrm{B}^+)$
 - N_s: events in the signal region (background subtraction)
 - $N^{\text{B+}}: B^{\pm} \to J/\psi \to \mu \mu)K^{\pm}(m_{\mu\mu K} \text{ fit})$
 - \mathcal{E}_{tot} : total selection efficiencies
 - $-f_s/f_u = 0.282 \pm 0.037$, $B(B^+) = (6.0\pm0.2)\times10^{-5}$ [PDG]
- Normalisation sample from $B^{\pm} \to J/\psi \to \mu \mu K^{\pm}$
 - minimise uncertainties on b-bbar cross section and luminosity
- Control sample from $B_S^0 \to J/\psi \to \mu \mu \phi \to K^+K^$
 - signal MC validation
- Blind analysis separating barrel and endcap regions

Control Channel: $B_S^0 \to J/\psi \to \mu \mu \phi \to K^+K^-$

MC normalized to the number of events in the data

- Validation of simulation of exclusive B_s^0 decays in data
 - Estimate confidence in signal MC
 - -Differences in fragmentation between B^{\pm} and B^0_s decays

Normalisation Channel: $B^{\pm} \rightarrow J/\psi \rightarrow \mu \mu)K^{\pm}$

$$\mathcal{B}(\mathrm{B_s^0} \to \mu^+ \mu^-) = \underbrace{\frac{N_\mathrm{S}}{N_\mathrm{obs}^{\mathrm{B}^+}}}_{f_\mathrm{s}} \underbrace{\frac{f_\mathrm{u}}{\varepsilon_\mathrm{tot}^{\mathrm{B}^+}}}_{\varepsilon_\mathrm{tot}} \mathcal{B}(\mathrm{B}^+)$$

- Results in a μμK final state
- Large and experimentally measured branching fraction
- Normalisation to this channel minimises uncertainties related to bb production cross section and integrated luminosity
- MC: Used to extract ε^{B+}_{tot}
 - $(7.7 \pm 0.8) \times 10^{-4}$ barrel,
 - $(2.7 \pm 0.3) \times 10^{-4}$ endcap
- Data: Measure N^{B+}_{obs}
 - -13045 ± 652 barrel
 - 4450 ± 222 endcap

Signal

- Event selection optimised for best expected upper limit using MC signal & data sidebands (frozen before unblinding!)
- Sideband 4.9 < m < 5.2 GeV and 5.45 < m < 5.9 GeV

```
p_{T}(\mu_{1}) > 4.5 \text{GeV}, \ p_{T}(\mu_{2}) > 4.0 \text{GeV}

p_{T}(B) > 6.5 \text{ GeV}, \text{ isolation } > 0.75

\alpha_{3D} < 0.05 \ (0.025), I_{3D}/\sigma(I_{3D}) > 15 \ (20)
```

Barrel ($|\eta| < 1.4$) Endcap ($|\eta| > 1.4$)

Signal window: 5.2-5.3 GeV for B^0 5.3-5.45 GeV for B_s^0

Results and Outlook

	Barrel		Endcap	
	$B^0 \rightarrow \mu^+\mu^-$	$B_s^0 \rightarrow \mu^+ \mu^-$	$B^0 \rightarrow \mu^+\mu^-$	$B_s^0 \rightarrow \mu^+ \mu^-$
$\varepsilon_{\mathrm{tot}}$	$(3.6 \pm 0.4) \times 10^{-3}$	$(3.6 \pm 0.4) \times 10^{-3}$	$(2.1 \pm 0.2) \times 10^{-3}$	$(2.1 \pm 0.2) \times 10^{-3}$
$N_{ m signal}^{ m exp}$	0.065 ± 0.011	0.80 ± 0.16	0.025 ± 0.004	0.36 ± 0.07
N _{comb}	0.40 ± 0.23	0.60 ± 0.35	0.53 ± 0.27	0.80 ± 0.40
N _{peak}	0.25 ± 0.06	0.07 ± 0.02	0.16 ± 0.04	0.04 ± 0.01
$N_{\rm obs}$	0	2	1	1

- Observations are consistent with SM background
- Br(B⁰_s $\rightarrow \mu^{+}\mu^{-}$)<1.9 x 10⁻⁸
- Br(B⁰ $\rightarrow \mu^{+}\mu^{-}$)<4.6 x 10⁻⁹

Results and Outlook

- Observations are consistent with SM background
 - Disfavours CDF excess
- No hints of new physics
- More data will improve sensitivity

Thanks!

Backups

(Largely "borrowed" from Urs Langenegger's EPS talk)

High Level Trigger

Variable	Signal	Control & Normalisation
Charge(mu1,mu2)	Opposite sign	Opposite sign
m(mu1,mu2) (GeV)	4.8 – 6.0	2.9 – 3.3
d _{ca} (cm)	< 0.5	< 0.5
p _T (mu) (GeV)	> 2	> 3
p _T (B) (GeV)	> 4	> 6.9
cos(alpha)	N/A	> 0.9
P(chi²/dof)	N/A	> 0.5%

Efficiency ≈ 80% after analysis selection (i.e. In plateau)
Estimated from MC and data
Difference gives systematic uncertainty

Analysis Cuts

Variable	Barrel	Endcaps
p _T (mu1) (GeV)	> 4.5	> 4.5
p _T (mu2) (GeV)	> 4.0	> 4.0
p _T (B) (GeV)	> 6.5	> 6.5
alpha (rad)	< 0.050	< 0.025
chi²/dof	< 1.6	< 1.6
I	> 0.75	> 0.75
d _{ca} (cm)	N/A	> 0.015

Normalisation sample also requires muons bend away from each other

Systematics and cross checks

Background, studied from	4%
inverted isolation sample: loosened selection	
• Signal	
acceptance: difference between production processes	4 %
analysis efficiency: comparison of data and MC	7.9 %
$ hd$ mass scale (resolution) from $J\!/\!\psi$ and $\varUpsilon(1S)$	3%
 Normalization 	
analysis efficiency: comparison of data and MC	4 %
kaon tracking efficiency	3.9 %
▶ yield fitting	5 %
Muon identification and trigger	
estimated through difference of MC and data-driven methods	
muon identification efficiency ratio	5 %
▶ trigger efficiency ratio	3%
Cross checks performed	
sample yield vs time, $\mathcal{B}(B^0 \to J/\psi \phi)$, inverted isolation yield	

BR values & new physics limits

 $[m_{1/2},m_0,A_0, aneta;\operatorname{sgn}(\mu)]$

$$\mathcal{B}(B^0 \to \mu^+ \mu^-) < 4.6 \times 10^{-9} (95\% \text{ C.L.})$$

$$\mathcal{B}(B^0 \to \mu^+ \mu^-) < 3.7 \times 10^{-9} \quad (90\% \text{ C.L.})$$

Where's the suppression?

Loop (2nd order weak process) \rightarrow g_W⁸ $|V_{ts}|^2$ or $|V_{td}|^2 \rightarrow 10^{-2}$ or 10^{-4} Helicity (W couples to LH(RH) (anti-)fermions) \rightarrow (m_I / m_B)² Annihilation of internal quarks \rightarrow (f_B / m_B)²