Measurement of the $Z \to \tau \tau$ Cross Section with the ATLAS Detector

Hendrik Weber on behalf of The Group E Collaboration

ESHEP2011

September 18, 2011

Motivation

Decays of SM gauge bosons into τ^{\pm} leptons...

Z^0

$$\circ$$
 $Z^0 \rightarrow \tau^+ \tau^-$

• $BR_{Z\to\tau^+\tau^-} = 3.367 \pm 0.008 \%$

@ $p = 45.559 \,\mathrm{GeV}$ [PDG2011]

$$W^{\pm} \to \tau^{\pm} \nu_{\tau} / \overline{\nu}_{\tau}$$

 \circ $BR_{W \to \tau^{\pm} \nu_{\tau}/\bar{\nu}_{\tau}} = 11.25 \pm 0.20 \%$

@ $p = 40.180 \,\mathrm{GeV}$ [PDG2011]

...are interesting in their own right...

$Z^0 o au^+ au^-$

- \circ Complements $Z^0 \to e^+e^-$ and $Z^0 \to \mu^+\mu^-$ measurements
- Has a well-known SM cross section
- ightharpoonup Commissioning and validation of the au^\pm identification technique

Motivation

...apart from constituting an important BG for new physics where the τ^{\pm} plays a significant role.

Higgs decay:

- \circ $H \rightarrow \tau^+\tau^-$
- Yukawa coupling $\propto m_l$:
- $> BR_{H \to \tau^+ \tau^-} > BR_{H \to l^+ l^-}$ with $l = \mu, e$

SUSY processes:

- $\tan \beta$: ratio of the VEV of 2 neutral Higgs fields
- If $\tan \beta$ large:
- $\begin{array}{c} \triangleright \ BR_{\widetilde{\chi}^0_2\to\tau^+\tau^-\widetilde{\tau}_1} > BR_{\widetilde{\chi}^0_2\to l^+l^-\widetilde{l}_1} \ \ \text{with} \\ l=\mu,e \end{array}$
- If $\tan \beta$ small:
- ho $BR_{\widetilde{\chi}^0_2 \to \tau^+ \tau^- \widetilde{\tau}_1}$ still important to test the universality of the coupling.

Object Reconstruction

Z ightarrow au au is reconstructed via 4 final states

- $\mu + hadrons + 3\nu$
- $e + hadrons + 3\nu$
- $e + \mu + 4\nu$
- $\mu + \mu + 4\nu$

Muon

- association
- isolation requirements:

 Σp_T (from inner detector in cone around muon) / p_{T_μ} ΣE_T (from calorimeter in cone aroun muon) / p_{T_μ}

Electron

- association
- additional quality cuts (medium or tight) depend on quality of tracks and shower shapes
- isolation requirements:

 $\Sigma p_T({\rm from~inner~detector~in~cone~around~electron}) \ / \ E_{T_e} \ \Sigma E_T({\rm from~calorimeter~in~cone~aroun~electron}) \ / \ E_{T_e}$

Object Reconstruction

Missing Transverse Energy

calculated using energy deposits in calorimeter and reconstructed muon tracks

$$E_T^{miss} = E_T^{miss}(\text{calo}) + E_T^{miss}(\text{muon}) - E_T^{miss}(\text{energyloss})$$
 [vector sum]

Jet

- anti-kT algorithm
- energy calibration is based on simulation and validated using test beam and collision data

Hadronic τ

- seeded by calorimeter jet
- associated with exactly 1 or 3 tracks, where $|\Sigma q^{tracks}|=1$
- required to pass additional identification criteria using:
 - energy-weighted transverse width
 - p_T-weighted track width
 - \bullet p_T of leading track in jet

Event Selection for the $\tau_h \tau_\mu$ channel

Selection

- \circ Muon trigger $(p_T > 10-13~GeV)$
- 0 1 isolated tight quality muon with $p_T > 15~GeV$, $|\eta| < 2.4$
- 1 hadronic tau with $p_T>20~GeV$, $|\eta|<2.47$ (removed crack region)
- ${\bf o}$ hadronic tau candidate with 1 or 3 tracks, $q=\pm 1$
- $q_{had}q_{\mu} < 0$

$\gamma^*/Z \rightarrow ll + jets$ rejection

No additional (loose) muons in the event

W + jets rejection

 $m_T < 50~GeV$ where

$$m_T = \sqrt{2p_T^{\mu} E_T^{miss} (1 - \cos(\phi(\mu) - \phi(E_T^{miss})))}$$

 $\begin{array}{l} \bullet \quad \frac{\sum \cos(\Delta\phi) > \quad -0.15}{\text{where } \Sigma \cos(\Delta\phi) = \\ \cos(\phi(\mu) - \phi(E_T^{miss})) + \cos(\phi(\tau_h) - \phi(E_T^{miss})) \end{array}$

Background Estimation

$W \rightarrow \ell \nu$ background estimation

A control region is defined:

- All selection cuts are applied; m_T and $\sum \cos \Delta \phi$ are inverted
- Contributions in the control region from $\gamma^*/Z \to \ell\ell$ and $t\bar{t}$ estimated on MC simulations

normalisation factor can then be calculated: $0.73 \pm 0.06_{stat}$

Multijet Control Region

A control region is also defined to estimate the multijet background:

- \bullet Both τ candidates must have the same sign
- \bullet The lepton isolation requirement is inverted and the ratio $R_{OS/SS}$ is measured

The ratio is assumed to be consistent in events passing normal isolation cut

- \bullet After subtracting non-QCD backgrounds this is found to be: $1.07\pm0.04_{stat}\pm0.04_{syst}$
- This ratio is used to estimate QCD contribution in the signal region

Background Estimation

Remaining Backgrounds

All of the other backgrounds are estimated from MC simulations

	$ au_{\mu} au_{h}$
$\gamma^*/Z \to \ell\ell$	11.1 ± 0.5
$W \to \ell \nu$	9.3 ± 0.7
W o au u	3.6 ± 0.8
$t \bar t$	1.3 ± 0.1
Diboson	0.28 ± 0.02
Multijet	24 ± 6
$\gamma^*/Z \to \tau \tau$	186 ± 2
Total expected events	235 ± 6
$N_{\rm obs}$	213

Expected number of events and number of events in data for $36\ pb^{-1}$ after full selection. Only statistical uncertainty shown.

Cross Section Calculation

Fiducial cross section

$$\sigma^{fid}(Z \to \tau \tau) \times BR = \frac{N_{obs} - N_{bkg}}{C_Z L}$$

C_Z definition

- Selection efficiency in the given phase space
- Takes into account many factors: triggering and reconstruction efficiency, resolutions...

${\it C}_{\it Z}$ calculation

- Evaluated on signal MC simulation
- The simulation is corrected to agree with data for:
 - Trigger efficiency
 - Reconstruction efficiency
 - Jet energy scale
 - ...
- Generator level \rightarrow number of events in the phase space N_{gen}
- lacktriangle Reconstructed level ightarrow number of events passing full selection N_{reco}
- \circ $C_Z = N_{reco}/N_{gen}$

Fiducial phase space for the $au_{\mu} au_{h}$ channel

Muon	$p_T > 15 \ GeV$
	$ \eta < 2.4$
Tau	$p_T > 20 GeV$
	$ \eta < 2.4$, excluded $1.37 < \eta < 1.52$
Event	$\Sigma \cos(\Delta \phi) > -0.15$ $m_T < 50 \text{ GeV}$
	$m_T < 50 GeV$
	$35 \ GeV < m_{vis} < 75 \ GeV$

Final cross section

$$\sigma(Z \to \tau\tau) = \sigma^{fid}/A_Z$$

Defined for $66~GeV < m_{\tau\tau} < 116~GeV$ before FSR

Acceptance factor A_Z

- Allows for an extrapolation to the full space phase
- Evaluated using MC simulation

Systematics Errors

Systematic uncertainty	$ au_{\mu} au_{h}$	$ au_{e} au_{h}$	$ au_e au_\mu$	$ au_{\mu} au_{\mu}$	Correlation
Muon efficiency	3.8%	1-1	2.2%	8.6%	✓
Muon d_0 (shape and scale)	-	10-01		6.2%	X
Muon resolution & energy scale	0.2%	1 - 1	0.1%	1.0%	✓
Electron efficiency, resolution &					
Charge misidentification		9.6%	5.9%	_	✓
τ_h identification efficiency	8.6%	8.6%	-	_	✓
τ_h misidentification	1.1%	0.7%	12	_	✓
Energy scale $(e/\tau/\text{jets}/E_T^{\text{miss}})$	10%	11%	1.7%	0.1%	✓
Multijet estimate method	0.8%	2%	1.0%	1.7%	(✓)
W normalization factor	0.1%	0.2%	-	_	X
Object quality cuts	1.9%	1.9%	0.4%	0.4%	✓
pile-up description in simulation	0.4%	0.4%	0.5%	0.1%	✓
Theoret. cross section	0.2%	0.1%	0.3%	4.3%	✓
A_Z systematics	3%	3%	3%	4%	✓
Total Systematic uncertainty	15%	17%	7.3%	14%	
Statistical uncertainty	9.8%	12%	13%	23%	X
Luminosity	3.4%	3.4%	3.4%	3.4%	✓

Correlation taken into account between different sources

Results

Final result

$$\sigma(Z \rightarrow \tau\tau) = 0.97 \pm 0.07_{stat} \pm 0.06_{sys} \pm 0.03_{lumi}$$
nb

	N_{obs}	$N_{obs} - N_{bkg}$	stat	sys
$ au_{\mu} au_{h}$	213	164	± 16	± 4
$ au_e au_h$	151	114	± 14	± 3
$ au_e au_\mu$	85	76	± 10	± 1
$ au_{\mu} \dot{ au_{\mu}}$	90	43	± 10	± 3

	σ [nb]	stat	sys
$\tau_{\mu}\tau_{h}$	0.86	± 0.08	± 0.12
$ au_e au_h$	1.14	± 0.14	± 0.2
$ au_e au_\mu$	1.06	± 0.14	± 0.08
$ au_{\mu} au_{\mu}$	0.96	± 0.22	± 0.12

$$\begin{split} \sigma(Z\to\tau\tau) &= 1.00 \pm 0.05_{stat} \pm 0.08_{sys} \pm 0.04_{lumi} \text{ nb} \\ \text{@CMS } (m_{inv} \in [60,120] \text{ GeV}) \end{split}$$

Conclusions

- Measured cross section is in agreement with SM
- Tau reconstruction in ATLAS performing well
- Now we sit and wait for new physics to show

Higgs decay modes branching ratios:

Backup Systematics Errors (1)

Muons

lacktriangle Muon Efficiency + Impact parameter d_0 smearing

Electrons

Charge identification

Hadronic τ_h

- Identification Efficiency (Jets)
- Energy scale smearing and description

Efficiency of lepton trigger, identification, and isolation

5-9% for e and 2-4% for muons

Efficiency of hadronic identification

(9-12%). Its calculated by varying the simulation conditions, such as the amount of detector material, calorimeter cell thresholds and so on.

Backup Systematics Errors (2)

Electron and let misidentification as τ candidates

- \circ The probability for an electron or a QCD jet to be misidentified as a hadronic au is measured.
- ullet The misidentification probability for electrons: au search in Z o ee events.
- ullet The misidentification probability for QCD jet: au search in Z o ll + jet events.

Energy scale

The au energy scale uncertainty is estimated by varying the detector geometry, hadronic showering model, underlying event model etc.

Other sources of systematic uncertainty

Uncertainty on the luminosity is 3.4%. Uncertainties due to a few problematic calorimetric regions, affecting electron reconstruction, are evaluated and found to a have a very small effect.

	$ au_{\mu} au_{h}$	$ au_e au_h$
N_{obs}	213	151
$N_{obs} - N_{bkg}$	$164 \pm 16 \pm 4$	$114 \pm 14 \pm 3$
A_z	0.117 ± 0.004	0.101 ± 0.003
C_z	0.20 ± 0.03	0.12 ± 0.02
B	0.2250 ± 0.0009	0.2313 ± 0.0009
L	$35.5 \pm 1.2 \text{ pb}^{-1}$	$35.7 \pm 1.2 \text{ pb}^{-1}$

	$ au_e au_\mu$	$ au_{\mu} au_{\mu}$
N_{obs}	85	90
$114 \pm 14 \pm 3$	$76 \pm 10 \pm 1$	$43 \pm 10 \pm 3$
A_z	0.114 ± 0.003	0.156 ± 0.006
C_z	0.29 ± 0.02	0.27 ± 0.02
B	0.0620 ± 0.0002	0.0301 ± 0.0001
L	$35.5 \pm 1.2 \text{ pb}^{-1}$	$35.5 \pm 1.2 \text{ pb}^{-1}$