Measurement of the $t\bar{t}$ Production Cross Section in pp Collisions at $\sqrt{7}$ TeV

(by CMS Collaboration)

(arxiv:1106.0902)

ESHEP 2011, Group F

September 18, 2011

Motivation & Event topology

To check the validity of the SM. Confirmation of the theory prediction $\sigma_{t\bar{t}} = 165^{+11}_{-16}$ pb (NNLO log).

- t discovered in 1995,
- t decays before hadronization,
- test of the CMS detector performance,
- important background in new physics,
- sensitivity to new physics.

Lepton (μ/e) + jets channel

Signatures:

- lepton with high p_T ,
- large ∉_T associated with undetected neutrino.
- 4 jets, 2 come from b.

roduction Detector Event Selection BGD Strategy Systematics Results Back-up

CMS Detector

- Analogue Si tracker in 3.8T magnetic field gives high p_T resolution
- High granularity homogeneous PbWO₄ ECAL
- Brass/steel and plastic scintillator HCAL
- Drift tubes and cathode strip chambers detect muon tracks

Event Reconstruction

- **Electrons** ECAL cluster + associated track + brem clusters
- Muons Must be found by both global (outside in) and track (inside out) algorithms
- Jets Reconstruct charged hadrons, neutral hadrons and photons from particle flow, calibrate calorimeter energy based on particle type, form into jets using anti-kt (cone size of 0.5) algorithm
- Missing Transverse Energy Negative of the vector sum of particles' p_T from particle flow reconstruction

Event Selection

Jet selection

- $\quad \bullet \ \ \rho_{\rm T}^{\rm jet} > 30 {\rm GeV}, \ |\eta^{\rm jet}| < 2.4$
- Remove jets matched to isolated leptons

Event selection

- At least one primary vertex
- Single lepton trigger: $E_{\mathrm{T}}^{e}, p_{\mathrm{T}}^{\mu} > 10\text{-}22, 9\text{-}15 \mathrm{GeV}$
- 1 lepton and at least 3 jets
- ullet No requirement on $E_{\mathrm{T}}^{\mathrm{miss}}$
- No b-tagging

Lepton selection

- $E_{\mathrm{T}}^{e} > 30 \mathrm{GeV}$, $p_{\mathrm{T}}^{\mu} > 20 \mathrm{GeV}$
- $|\eta^e| < 2.5$, $|\eta^\mu| < 2.1$
- Isolation requirement

Lepton efficiencies

- Account for trigger, ID, isolation
- Extracted using tag-and-probe with Z events
- $\epsilon_{id+iso}^e = 0.75$, $\epsilon_{id+iso}^\mu = 0.88$
- $\bullet \ \epsilon_{
 m trig}^{
 m e} = 0.982, \ \epsilon_{
 m trig}^{\mu} = 0.922$

Background processes

- ① Single Top $\sigma = (21 \pm 1)$ pb , NLO, MCFM
- \bigcirc W($|\nu\rangle$ + jets σ = (31.3 \pm 1.6) nb, NNLO, FEWZ
- 3 Z(II) + jets $\sigma = (3.05 \pm 0.13)$ nb, NNLO, FEWZ
- Diboson neglected
- QCD (PYTHIA)

Simulation procedure:

- MADGRAPH parton-level, ME up to 4 jets
- PYTHIA showering (MLM) matching)
- GEANT4 based CMS simulation

QCD background:

- Preliminary estimate with Pythia generated events
- From data (using sidebands depleted of W):
 - Electron sample 2 out of 3 quality criteria fail (IP, isolation, electron PID)
 - Muon sample sideband in isolation

Cross section measurement

Discriminating variables:

3 jet bin: $\not E_T$ 4 jet bin: M3M3 = inv. mass of 3-jetcombination with max p_T

Using templates:

$$\mu_j[i] = \sum_k \beta_k \cdot \alpha_{jk}[i]$$

Maximum Likelihood fit to get $\beta_k = \sigma_k/\sigma_k^{prediction}$ (for $t\bar{t}$ and all the backgrounds)

Constraints

- $\sigma^{3-jets}/\sigma^{>=4-jets}$ fixed,
- $\sigma^{single-top}$ and $\sigma^{W+jets}/\sigma^{Z+jets}$ constrained from theory with Gaussian term with $\sigma=30\%$,
- ullet independent measurements in e and μ channel, then combined.

Cross section measurement

Discriminating variables:

3 jet bin: $\not E_T$ 4 jet bin: M3M3 = inv. mass of 3-jetcombination with max p_T

Using templates:

$$\mu_j[i] = \sum_k \beta_k \cdot \alpha_{jk}[i] =$$

Maximum Likelihood fit to get $\beta_k = \sigma_k/\sigma_k^{prediction}$ (for $t\bar{t}$ and all the backgrounds)

Constraints:

- $\sigma^{3-jets}/\sigma^{>=4-jets}$ fixed,
- $\sigma^{single-top}$ and $\sigma^{W+jets}/\sigma^{Z+jets}$ constrained from theory with Gaussian term with $\sigma=30\%$,
- ullet independent measurements in e and μ channel, then combined.

Cross-Section Measurement II

Use of Neyman Construction to obtain the confidence level of $\sigma^{t\bar{t}}$

Neyman Construction for the combined measurement

- 50 000 pseudo-experiments drawn for each value
- changing randomly each background normalization (gaussian with $\mu=1,\,\sigma$ 30% or 50% for QCD)
- and changing each bin content following Poisson distribution
- for each $\beta_{t\bar{t}}$ value \rightarrow median value ($\beta_{t\bar{t}}^{fit}$) and 68% (and 95%) quantiles (confidence belt)
- from the confidence belt $o eta_{t\bar{t}}^{ extit{measured}}$ with $\pm 1\sigma$ uncertainty is extracted

Systematics

- 9 sources of systematics taken into account. JES is largest.
- Two templates $\alpha_{jk}^{u,\pm}[i]$ are created corresponding to a $\pm 1\sigma$ deviation for every source of systematics uncertainty (eg. JES up, JES down).
- Systematics taken into account in the pseudo experiments using bin-per-bin interpolated templates, with random parameters δ_u extracted by a gaussian distribution with unit width.

	combined result	
	stat.+syst.	syst.
	uncertainty	only
Stat. uncertainty	+8.7% -8.4%	_
JES	+20.3% -17.6%	+18.3% -15.5%
Factorization scale	+11.2% -10.6%	+7.1% -6.5%
Matching threshold	+10.5% -9.8%	+5.9% -5.0%
Pileup	+9.3% -9.3%	+3.3% -4.0%
ID/reconstruction	+9.2% -8.7%	+3.0% -2.3%
QCD rate & shape	+9.1% -8.9%	+2.7% -2.9%
ISR/FSR variation	+9.0% -8.6%	+2.3% -1.8%
JER	+8.8% -8.4%	+1.3% -0.0%
PDF uncertainty	+8.7% -8.5%	+0.0% -1.3%
Total	+23.5%	+21.8%

$$\alpha_{jk}^{\mathrm{syst}}[i] = \alpha_{jk}[i] + \sum_{u} |\delta_{u}| \cdot (\alpha_{jk}^{u,\mathrm{sign}(\delta_{u})}[i] - \alpha_{jk}[i])$$

Results

Electron + Jets
$$\sigma_{t\bar{t}} = 180^{+45}_{-38}(\text{stat.+syst.}) \pm 7(\text{lumi.}) \text{ pb.}$$

Muon + Jets $\sigma_{t\bar{t}} = 168^{+42}_{-35}(\text{stat.+syst.}) \pm 7(\text{lumi.}) \text{ pb.}$

Total $\sigma_{t\bar{t}} = 173^{+39}_{-32}(\text{stat.+syst.}) \pm 7(\text{lumi.}) \text{ pb.}$

Prediction $\sigma_{t\bar{t}} = 163^{+7}_{-5} \text{ pb. (NNLO)}$

Cross checks

- Count events with isolated muon and ≥ 4 jets with a more robust selection criteria.
- Use p_T^{μ} and N_{jets} instead of $\not\!\!E_T$ and M3.
- Fit η^{μ} and use asymmetry between W⁺ and W⁻ production to determine background.
- Use main method with different selection criteria.

All four cross check are consistent with the main result.

Results: CMS vs ATLAS comparison

CMS
$$\sigma_{t\bar{t}}=173^{+39}_{-32} ({
m stat.+syst.})\pm 7 ({
m lumi.}) {
m ~pb.}$$
 Relative Uncertainty = $+23.5\%$ / -19.3%

ATLAS
$$\sigma_{t\bar{t}}=171\pm17({
m stat.})^{+20}_{-17}({
m syst.})\pm6({
m lumi.})~{
m pb.}$$
 Relative Uncertainty = $+15.5\%$ / -14.5%

- Jet energy scale is the largest contribution to relative systematic uncertainty.
- For the CMS result the contribution is (+18.3% / -15.5%).
- ullet For the ATLAS result the contribution is $(+5.7\%\ /\ -6.1\%)$.

roduction Detector Event Selection BGD Strategy Systematics Results Back-up

Back-up slides

