

Calorimeter Upgrade Meeting - News

F. Machefert LAL, Orsay

Frédéric Machefert - Calo Upgrade Meeting

Electronics tests

- Carlos came to LAL in November
 - A few issues solved on the digital board (\rightarrow Olivier's presentation)
 - Oscillations on the analog part (\rightarrow Carlos' presentation)
- Joined test in Barcelona (ASIC tests + digital electronics)
 - January / February ?
 - What do we need ?
 - Digital electronics setup (firmware \rightarrow Olivier's presentation)
 - Software : what kind of measurement ? Linearity, noise, crosstalk, spill over, ...
- Organization of irradiation tests of a digital board with the analog mezzanine
 - 2 effects : Dose, SEE
 - Beam availability will be a problem
 - Protons (**Dose** SEE) : PSI, CERN (?), CPO(Orsay)
 - Heavy ions (SEE Dose) : GANIL (?)
 - Firmware has to be adapted :
 - USB \rightarrow SPECS (maybe not necessary)
 - Mitigation of the firmware (RAM pointers, configuration registers \rightarrow TVR)
 - What version of the ASIC can be used for this (mitigation)?

Electronics tests

We have to prepare tests of the electronics in beam with modules/PMT/particles

- Linearity, spill over, noise, ... in « real » conditions
- 2 solutions to be looked at
 - Can we use the same setup as the one we had for the present electronics ?
 - Availability of the beams is an issue
 - TDC to be used and Lecroy integration availability
 - Probably some firmware adpatations required
 - Could we install an acquisition setup in the cavern and use real events
 - Can we send the signal of a few modules to both electronics
 - Choose corners and need a shutdown to prepare this
 - Factor 5 in the upgrade electronics \rightarrow ok
 - Need to tune the reconstruction/trigger to compensate (present data)
 - Can we use the L0 from the experiment to perform our parallel acquisition
 - Can be extracted from a CROC \rightarrow maybe not optimal (location)
 - Firmware has to be adapted to store a few consecutive events per L0
 - Would probably use the SPECS for data acquisition
 - Difficulty to correlate new/current electronics events
 - This would be most certainly very useful
 - Can we locally count the number of L0 ?

Irradiation of Modules - PMT Gain

- Irradiation of the modules : Yuri
 - 2 modules in the tunnel have to be scanned during the shutdown \rightarrow Yuri's presentation
 - How do it compare with the recent measurements ?
 - Scan done most probably in February
 - Need to evaluate the dose received
 - Tunnel passive dosimeters will be read during the shutdown
 - Asked Pascal Perret to read them with the other passive dosimeter of the Calo
 - Almost all the Calo passive dosimeters will be read out

SPD / PRS decision

SPD/PRS

- Motivations for the SPD/PRS are weak
 - Physics gain (trigger, offline) looks small maybe inexistant (remove lead)
 - Not negligible technical problems (conception, manpower, cost, ...)
 - There seems to be a general concensus on the removal of SPD/PRS
- Latest PID workshop conclusion :

<u>We should make a decision by the end of the year</u> (\rightarrow Pascal's talk)

- No one is really involved in it
- This requires MC simulations \rightarrow see below

MC productions planned

- There has been a MC production meeting
- Calorimeter short term issues
 - SPD/PRS decisions
 - Pile up effects on both ECAL and HCAL
- Calorimeter MC production proposal :
 - 3 luminosities : 10³³, 2x10³³, 3x10³³
 - No SPD/PRS type configuration \rightarrow <u>3 samples</u>
 - 2 configurations
 - **<u>1 extra sample</u>** at 2x10³³ with SPD/PRS
 - Choose physics channels with photons
 - 2 physics channels with photons of different Pt ranges (pile-up has varying effects with respect to the Pt)
 - <u>High Pt : $B \rightarrow K^* \gamma$ or $B \rightarrow \phi \gamma$ </u>
 - Low Pt : sample with low Pt photon/ π^0
 - Only for $2x10^{33}$ and no SPD/PRS \rightarrow <u>1 extra sample</u>
 - <u>5 samples in total</u>
 - Keep MC for all
 - Keep intermediate steps for 2 samples
 - 2x10³³ High Pt and low Pt
 - 100k per sample should be ok

Electronics : Not covered items

- The « fast signal » (GBT) implementation on the new FEB is not clear
 - We would like to « externalize » this parts
 - Example of the present calorimeter optical mezzanine \rightarrow Bologna
 - We could imagine building optical mezzanines (GBT, optical emitter) to plug on the FEB
- A new control board is needed in the crates
 - Should provide the clock, slow control, command signals to the backplane, FEB, TVB
- Slow control
 - Some parts have to be replaced and some other will be kept
 - FEB vs LED, HV, integrators, etc...
 - Keep SPECS everywhere would be easier for us... unless we are alone
 - Another solution would be to change the firmware of the SPECS FPGA to be kept
 - * SPECS \rightarrow I2C would become I2C(GBT) \rightarrow I2C
 - A GBT mezzanine would replace the SPECS mezzanine
 - This looks feasible but no real work on this field yet

■ The future TELL1 → TELL40 will have to be programmed to swallow the Calo data

