Hector :

A fast multi-purpose simulator for particle propagation

Contents

- Introduction : principles \& basics
- Validation : cross-checks
- RP scenario
- acceptance, irr. dose, chromaticity
- E reconstruction, misalignment
- Perspectives

Introduction

Matrix representation of the transport :

$$
X(s)=X(0) \underbrace{M_{1} M_{2} \ldots M_{n}}_{M_{\text {beamline }}}
$$

Where :
X is the phase-space vector of the particle M_{i} are the matrices associated to the magnets
Rem : here energy losses NOT negligible => energy dependence of M_{i} as a correction to linearity

Input Needed :

- effective field strength / length
- magnet position / aperture

Direct interface with the LHC optics tables, but Hector is also compatible with any beamline (multi-purpose library)

Implementation

The algorithm :

The 4 -vector can be specified :

- completely (from generator)
- by choosing energy loss and Q^{2} of emitted object Implementation : C++/ROOT + support (CVS, doxygen, make)

Implementation

The LHC beams (right of CMS) :

Implementation

Aperture effect of "MB.B9R5.B1" on 110 GeV energy loss protons

Aperture :
geometrical aperture
ture effect of "MB.B9R5.B1" on 110 GeV energy loss protons

Tests whether the particles hit the physical border of the vacuum tube

Introduction

Performances :

Computing time for 10000 particles

$\sim 3.5 \mu$ s particle $^{-1}$ magnet $^{-1}$
-> $\sim 10^{-3} \mathrm{~s} / \mathrm{CMS}$ event

- Just take some protons, from LHC beam 1
- Propagate them to your favourite Roman pot detector
- Plot the $x, y, x^{\prime}, y^{\prime}$ in the transverse plane

β functions - beam 1, forward

Comparing to MAD-X and FPTrack

Beam Frame

Absolute Frame

Very good agreement everywhere :
FPTrack vs Mad : < $5 \mu \mathrm{~m}$
Hector vs Mad : < $0.5 \mu \mathrm{~m}$

Direct physics output

RP acceptances (220m) :

Acceptance of roman pots at $220 \mathrm{~m}(2000 \mu \mathrm{~m})$ for beam 1

Which protons are detected ?

Acceptance of roman pots at $220 \mathrm{~m}(\mathbf{2 0 0 0} \mu \mathrm{~m})$ for beam 1

Comparison to MAD-X

Acceptance of roman pots at $420 \mathrm{~m}(4000 \mu \mathrm{~m})$ for beam 1

MAD-X (from TOTEM Note 05-2)

Hector

Direct physics output

Diffractive physics: pp $\rightarrow \mathrm{pX}$ (PYTHIA inside)

Direct physics output

Chromaticity grid :
where is your proton given its energy/angle ?

Reconstruction

By linearity :

$$
\begin{aligned}
& x_{s}=a_{s} x_{0}+b_{s} x_{0}^{\prime}+d_{s} E \\
& x_{s}^{\prime}=\alpha_{s} x_{0}+\beta_{s} x_{0}^{\prime}+\gamma_{s} E
\end{aligned}
$$

We should solve for $\mathrm{x}_{0}, \mathrm{x}_{0}{ }^{\prime}, \mathrm{E}$ (with only 2 equations)
As physics won't change x_{0}, we choose to neglect a_{s} and α_{s}. This method leads to :

$$
E=\frac{b_{2} x_{1}-b_{1} x_{2}}{b_{2} d_{1}-b_{1} d_{2}} \quad \text { Angle compensation method }
$$

where b_{1} and b_{2} are the b parameters for the two detectors.

Reconstruction

Reconstructed variables : energy loss ($\sigma_{\mathrm{E}} \mathrm{vs} \mathrm{Q}^{2}$ and E)

Misalignment

Using Hector, one can estimate the effect of the misalignment of quadrupoles on the center-of-mass energy reconstruction:

Example 2 :

Higgs mass $=115 \mathrm{GeV}$ Quadrupole : MQXA. 1 R5 (B1
Location : 23m from IP
Displacement : $500 \mu \mathrm{~m}$ tag in both 420m detectors legend:

- hector reconstruction
- misalignement effect
- correction by beam position

MC higgs mass

Work-in-progress

In progress :

- Integration into CMS software framework, as a routine for MC production
- Validation with true electromagnetism
- Beam optics misalignment effects
- using Hector for fwd physics
http://www.fynu.ucl.ac.be/hector.html new : https://twiki.cern.ch/twiki/bin/view/CMS/HECTOR

Back-up slides

Implementation (III)

Matrix structure : $\mathbf{M}_{\text {units }}=\left(\begin{array}{cccc|cc}\mathcal{A} & \mathcal{A} & 0 & 0 & 0 & 0 \\ \mathcal{A} & \mathcal{A} & 0 & 0 & 0 & 0 \\ 0 & 0 & \mathcal{B} & \mathcal{B} & 0 & 0 \\ 0 & 0 & \mathcal{B} & \mathcal{B} & 0 & 0 \\ \mathcal{D} & \mathcal{D} & 0 & 0 & 1 & 0 \\ 0 & K & 0 & K & 0 & 1\end{array}\right) \rightarrow$ (de)focusing
Matrix example : Quadrupole
$\mathrm{M}_{\text {vertical-quadrupole }}=\left(\begin{array}{cccccc}\cosh (\omega) & \sqrt{k} \sinh (\omega) & 0 & 0 & 0 & 0 \\ (1 / \sqrt{k}) \sinh (\omega) & \cosh (\omega) & 0 & 0 & 0 & 0 \\ 0 & 0 & \cos (\omega) & -\sqrt{k} \sin (\omega) & 0 & 0 \\ 0 & 0 & (1 / \sqrt{k}) * \sin (\omega) & \cos (\omega) & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1\end{array}\right)$

Hector Direct physics output (III)

RP acceptances (420m)

Acceptance of roman pots at $420 \mathrm{~m}(4000 \mu \mathrm{~m})$ for beam 1

Acceptance of roman pots at $420 \mathrm{~m}(4000 \mu \mathrm{~m})$ for beam 1

Reconstruction (III)

Reconstructed variables: Q^{2}

