

Hector :

A fast multi-purpose simulator for particle propagation

X. Rouby & J. de Favereau & K. Piotrzkowski

March, 13th (2007)

Contents

C By

- Introduction : principles & basics
- Validation : cross-checks
- RP scenario
 - acceptance, irr. dose, chromaticity
 - E reconstruction, misalignment
- Perspectives

Introduction

Matrix representation of the transport :

$$X(s) = X(0) \underbrace{M_1 M_2 \dots M_n}_{\bullet}$$

Where :

 M_{beamline}

X is the phase-space vector of the particle

 M_{i} are the matrices associated to the magnets

Rem : here energy losses NOT negligible => energy dependence of M_i as a correction to linearity

Input Needed :

- effective field strength / length
- magnet position / aperture

Direct interface with the LHC optics tables, but Hector is also compatible with any beamline (multi-purpose library)

The 4-vector can be specified :

- completely (from generator)

- by choosing energy loss and Q² of emitted object Implementation : C++/ROOT + support (CVS, doxygen, make)

Implementation

The LHC beams (right of CMS) :

Introduction

Performances :

Computing time for 10000 particles

- Just take some protons, from LHC beam 1
- Propagate them to your favourite Roman pot detector
- Plot the x,y,x',y' in the transverse plane

Validation

Validation

D

Comparing to MAD-X and FPTrack Beam Frame Abs

Absolute Frame

RP acceptances (220m) :

Comparison to MAD-X

Diffractive physics : pp → pX (PYTHIA inside)

Direct physics output

Chromaticity grid :

where is your proton given its energy/angle ?

Reconstruction

By linearity :

$$x_s = a_s x_0 + b_s x'_0 + d_s E$$
$$x'_s = \alpha_s x_0 + \beta_s x'_0 + \gamma_s E$$

We should solve for x_0^{-} , x_0^{-} , E (with only 2 equations)

As physics won't change $x_{_0}$, we choose to neglect $a_{_s}$ and $\alpha_{_s}.$ This method leads to :

$$E=rac{b_2 x_1-b_1 x_2}{b_2 d_1-b_1 d_2}$$
 Angle compensation method

where b_1 and b_2 are the b parameters for the two detectors.

Reconstruction

Reconstructed variables : energy loss ($\sigma_{E}vs Q^{2}$ and E)

Misalignment

Using Hector, one can estimate the effect of the misalignment of quadrupoles on the center-of-mass energy reconstruction :

Example 2 :

Higgs mass = 115 GeV Quadrupole : MQXA.1R5 (B1 Location : 23m from IP Displacement : 500 µm tag in both 420m detectors <u>legend :</u>

- hector reconstruction
- misalignement effect
- correction by beam position

In progress :

- Integration into CMS software framework, as a routine for MC production
- Validation with true electromagnetism
- Beam optics misalignment effects
- using Hector for fwd physics
- •... http://www.fynu.ucl.ac.be/hector.html new: https://twiki.cern.ch/twiki/bin/view/CMS/HECTOR

Back-up slides

$${
m M}_{{f vertical-quadrupole}} =$$

Direct physics output (III)

Reconstruction (III)

Reconstructed variables : Q^2

