FPTrack

A tracking algorithm for forward physics

Will Plano
University of Manchester

What is FPTrack

- FPTrack initially written by Peter Bussey of Glasgow.
- A fast simulation of the beam optics from the interaction point through to forward detectors down the beamline.
- Allows tracking of protons from any central diffractive event (e.g. CEP of Higgs) to detectors.
- Currently used to study CEP Higgs etc. at FP420 including calibration of detectors.

What is FPTrack...

- Beamline modelled as a series of optical elements, Quads, Dipoles etc.
- Each element is a set of transport equations for each of the 6 particle variables x position/angle, y position/angle, z position, momentum loss.
N.B. transport equations need not be linear.
- E.g. (lossless) horizontally focussing quad.

$$
\begin{array}{ll}
x_{f}=\cos (\sqrt{|k|} \mid) x_{i}+1 / \sqrt{|k|} \sin (\sqrt{|k|} l) x^{\prime}{ }_{i} & z_{f}=z_{i}+l \\
x^{\prime}{ }_{f}=-\sqrt{|k|} \sin (\sqrt{|k|} l) x_{i}+\cos (\sqrt{|k|} \mid l) x^{\prime}{ }_{i} & \\
y_{f}=\cosh (\sqrt{|k|} l) y_{i}+1 / \sqrt{|k|} \sinh (\sqrt{|k|} l) y^{\prime}{ }_{i} & d p_{f}=d p_{i} \\
y^{\prime}{ }_{f}=\sqrt{|k|} \sinh (\sqrt{|k|} l) y_{i}+\cosh (\sqrt{|k|} l) y^{\prime}{ }_{i} &
\end{array}
$$

Using FPTrack

- Re-written in C++ to allow ease of modification (changing detector geometry, adding/modifying collimators etc.) and to allow running alongside MC generator on event by event basis.
- Uses an object oriented approach with classes for different magnet types, apertures etc.
- Builds into a library so that it does not need to be recompiled each time the run parameters change.

Class Diagram

- Main class is the Beamline class.
- Beamline contains a vector of Elements.
- Each Element has an Aperture.
- Particles are passed down the Beamline and stored in each Element.

FPTrack: Beamline

FPTrack:Particle

FPTrack:Order

Example Code

- Only needs a few lines of code to run.
- Create a beamline.
- Optionally add elements.
- Make / generate a Particle (e.g. from ExHuME).
- Process particle in beamline.
- Retrieve data from beam elements.

```
#include <iostream>
```

\#include <iostream>
\#include "CLHEP/Vector/LorentzVector.h"
\#include "CLHEP/Vector/LorentzVector.h"
\#include "Beamline.h"
\#include "Beamline.h"
\#include "DetectorPlane.h"
\#include "DetectorPlane.h"
int main(int argc, char** argv) (
int main(int argc, char** argv) (
EPTrack::Beamline myBeam(FPTrack::IP1,
EPTrack::Beamline myBeam(FPTrack::IP1,
FPTrack::PLUS_Z,
FPTrack::PLUS_Z,
"twiss_bl.txt");
"twiss_bl.txt");
myBeam.AddElement(
myBeam.AddElement(
new FPTrack::DetectorPlane(
new FPTrack::DetectorPlane(
"EP420 Pot",
"EP420 Pot",
CLHEP::Hep3Vector(0.0, 0.0, 420.0)));
CLHEP::Hep3Vector(0.0, 0.0, 420.0)));
CLHEP::HepLorentzVector ip (0.0, 0.0, 0.0, 0.0);
CLHEP::HepLorentzVector ip (0.0, 0.0, 0.0, 0.0);
CLHEP::HepLorentzVector pmom(0.0, 0.0, 7000.0, 7000.0);
CLHEP::HepLorentzVector pmom(0.0, 0.0, 7000.0, 7000.0);
FPTrack::Particle proton(ip, pmom);
FPTrack::Particle proton(ip, pmom);
myBeam.ProcessParticle(proton);
myBeam.ProcessParticle(proton);
FPTrack::Element* myPot =
FPTrack::Element* myPot =
myBeam.GetElementPtrByName("FP420 Pot");
myBeam.GetElementPtrByName("FP420 Pot");
std::cout << "Proton went here: "
std::cout << "Proton went here: "
<< myPot->GetParticleOut() << std::endl;
<< myPot->GetParticleOut() << std::endl;
return 0;

```
    return 0;
```


16
16 \}

Beam spots at ATLAS $\pm 220 / 420 \mathrm{~m}$

$x-y / c m$	220 m	420m
+z		
$-Z$ 13/03/07		

$\xi-t \quad a c c e p t a n c e, A T L A S ~ \pm 220 / 420 m$

$\xi-\mathrm{t}$	220 m	420 m
+z		
$-z$ $13 / 03 / 07$		

CEP Higgs (120) protons at 420 m

$+Z$

-Z

Summary

- Fast, $\sim 0.3 \mathrm{~ms}$ per proton per magnet on my Intel ${ }^{\circledR}$ Centrino ${ }^{\text {TM }}$ Iaptop @ 600 MHz i.e. 50,000 events to $\pm 420 \mathrm{~m}$ (35 magnets each way) takes ~ 20 mins.
- Validated, gives the right answers :)
- Easy to use (subjective but try it and see)
- Ask me if you have any questions:
w.g.plano@postgrad.manchester.ac.uk

