TOTEM Physics Programme for the LHC Start

Hubert Niewiadomski

Brunel University / CERN
on behalf of the
TOTEM Collaboration
http://totem.web.cern.ch/Totem/

HERA - LHC Workshop

14 March 2007

Physics programme

Total cross section at 14 TeV with a precision of 1%
Elastic pp scattering, $10^{-3} \mathrm{GeV}^{2}<-\mathrm{t}<10 \mathrm{GeV}^{2}$
Soft Single \& Central Diffraction
Low-x dynamics
Leading particle \& energy flow in forward direction
Semi-hard + hard Single \& Central Diffraction: production of jets, \mathbf{W}, heavy flavours.....

Exclusive particle production in Central Diffraction
$\gamma \gamma \& \gamma \mathrm{p}$ physics

Physics program for the LHC start

Total cross section with a precision of about 5%
Multiplicity distributions
Diffraction at low/medium luminosity: SD, DPE

TOTEM

TOTEM

Hubert Niewiadomski, TOTEM, HERA-LHC Workshop

T1 Telescope

TOTEM

- Cathode Strip Chambers (CSC)
- $3.1<|\eta|<4.7$
- 5 planes with measurement of three coordinates per plane.
- 3 degrees rotation and overlap between adjacent planes
- Primary vertex reconstruction (beam-gas interaction removal)
- Trigger with anode wires
- Connected to new VFAT chips

T2 Telescope

- Gas Electron Multiplier (GEM)
- $5.3<|\eta|<6.5$
- 10 half-planes @ 13.5 m from IP5
- Half-plane:
- 512 strips (width $80 \mu \mathrm{~m}$, pitch of $400 \mu \mathrm{~m}$)
- $65 * 24=1560$ pads ($2 \times 2 \mathrm{~mm}^{2}->7 \times 7$ mm^{2})
- Primary vertex reconstruction (beam-gas interaction removal)
- Trigger using (super) pads
- Detectors tested in a testbeam with new VFAT chips
- First beam profiles, cluster distributions and detector characteristics

Roman Pots

TOTEM

- Measurement of very small proton scattering angles (few $\mu \mathrm{rad}$)
- Vertical and horizontal pots mounted as close as possible to the beam
- BPM fixed to the structure gives precise position of the beam

Assembly of 8 RP units

- Leading proton detection at distances down to 10× σ (beam) + d
- Need "edgeless" detectors that are efficient up to the
physical edge to minimize that are efficient up to the
physical edge to minimize "d"
- $\quad \sigma($ beam $) \approx 0.1-0.6 \mathrm{~mm}$ (optics dep.)
 and horizontal dets.

Si Edgeless Detectors for RP

Planar technology with CTS (Current Terminating Structure)

- AC coupled microstrips made in planar technology with novel guardring design and biasing scheme
- In production, all expected by June 2007
- First measurement of leakage current at CERN:

60 nA at 200 V (excellent)

- Strong improvements on the cut at the sensitive edge
14/03/2007
Hubert Niewiadomski, TOTEM, F

Detector's ID

VFAT-2 chip

- Trigger and tracking ASIC
- Digital output
- Designed for TOTEM, used by all detectors
- 128 channels, thresholds adjustable per channel
- I2C controlled
- Radiation Hardness and Single Event Upset protection
- Successfully tested together with T1 \& T2 detectors in a test beam
- Noise scans, delay scans, functionality testing
- On-going tests with RP detectors

Total cross section

Disagreement E811-CDF: 2.6 б
Best combined fit by COMPETE:

$$
\sigma_{t o t}=111.5 \pm 1.2_{-2.1}^{+4.1} \mathrm{mb}
$$

Models vary within (at least) ${ }_{-20}^{+10} \%$

Luminosity independent method:

$$
\begin{gathered}
\begin{array}{c}
\text { Optical } \\
\text { Theorem }
\end{array} \quad \mathrm{L} \sigma_{\text {tot }}^{2}=\frac{16 \pi}{1+\rho^{2}} \times\left.\frac{d N}{d t}\right|_{t=0} \\
\mathrm{~L} \sigma_{\text {tot }}=N_{\text {elastic }}+N_{\text {inelastic }}
\end{gathered}
$$

$$
\sqrt{n}
$$

$$
\sigma_{t o t}=\frac{16 \pi}{1+\rho^{2}} \times \frac{\left.(d N / d t)\right|_{t=0}}{N_{e l}+N_{\text {inel }}}
$$

- Elastic rate $N_{\text {el }}$
- Extrapolation to the optical point $t=0\}$ Depend on optics
- Inelastic rate $N_{\text {inel }}$
- ρ - COMPETE extrapolation

$$
\rho=0.1361 \pm 0.0015_{-0.0025}^{+0.0058}
$$

Elastic scattering

Necessary: optics with acceptance at low $|t|$:
$\beta^{*}=1540 \mathrm{~m}$ (difficult to have at the beginning - requires special injection optics); acceptance at very low $|t|:|t|>2 \cdot 10^{-3} \mathrm{GeV}^{2}$

Proposal submitted to LHCC:
$\beta^{*}=90 \mathrm{~m}$ (easier: un-squeezing of existing injection optics, $|t|>3 \cdot 10^{-2} \mathrm{GeV}^{2}$)

Proposal: Optics with $\beta^{*}=90 \mathrm{~m}$

- |t|-acceptance down to $0.03 \mathrm{GeV}^{2}$, covering well the exponential region of d / dt;
- Typical luminosity $L \sim 10^{28}-10^{29} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$
- parallel-to-point focusing only in vertical plane @ $220 \mathrm{~m} \xrightarrow{\text { elastic }}\left\{y(220)=L_{y} \cdot \Theta_{y}^{*}\right.$
- no emmission-angle dependence in horizontal displacement $\left\{\begin{array}{l}x(220)=v_{x}(s) \cdot x^{*}\end{array}\right.$
- Thick beam usefull for commissioning of RP detectors

Elastically scattered protons

TOTEM

Extrapolation of the elastic cross-section to $t=0, \beta^{*}=90 \mathrm{~m}$
Fitting function: $\frac{d \sigma}{d t}=A \mathrm{e}^{\mathrm{B}(t) \mathrm{t}}$ with $\mathrm{B}(\mathrm{t})=\mathrm{a}+\mathrm{bt}+\mathrm{ct}^{2}$,
$\int \mathrm{Ldt}=2 \mathrm{nb}^{-1}\left(5 \mathrm{~h}, \mathrm{~L}=10^{29} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}\right)$

Errors of extrapolation for different models (MC)

Exponential slope fit up to $0.25 \mathrm{GeV}^{2}$
Hubert Niewiadomski, TOTEM, HERA-LHC Workshop

TOTEM

Errors of $\mathrm{d} \sigma / \mathrm{dt} \mathrm{t} \rightarrow 0$ extrapolation, $\beta^{*}=90 \mathrm{~m}$

- Smearing effects due to beam divergence: -2\% shift
- Statistical errors
- Uncertainty of effective length $\mathrm{L}_{\text {eff }}: 3 \%$ extrapolation offset
- RP position systematics less critical ($\sigma_{220 \mathrm{y}}=0.625 \mathrm{~mm}, \Delta \mathrm{t} / \mathrm{t} \propto \Delta \mathrm{y} / \sigma_{\mathrm{y}}$)
- Model dependent deviations: $\pm 1 \%$ (except Islam)

Total uncertainty < 4\% @ $\beta^{*}=90 \mathrm{~m}$
($\sim 0.5 \%$ @ $\left.\beta^{*}=1540 \mathrm{~m}\right)$

Elastic event rate $\mathbf{N}_{\text {el }}$

- $\leq \mathbf{2 \%}$, high correlation with error of do/dt

Inelastic event rate $\mathbf{N}_{\text {inel }}$

T1\&T2 + RP provide fully inclusive trigger:
reconstruct primary vertex to discriminate against beam-gas interactions

TOTEM Trigger efficiency:
SD: 82 \%,
NSD > 99 \%!

Single Diffractive	RP	CMS	RP
	$\cdots J$	\square	1
Trigger:		\square	01
Double Diffractive	\cdots	\square	\cdots
Trigger:	010		01
Central Diffractive	π		
Trigger:			01
Minimum Bias	η		\square
Trigger:	$\int 0$		01

Extrapolation of SD cross-section to large $1 / \mathrm{M}^{2}$ using $\mathrm{d} \sigma / \mathrm{dM}^{2} \sim 1 / \mathrm{M}^{2}$.

TOTEM

Losses for TOTEM inelastic trigger

	σ $[\mathrm{mb}]$	T1/T2 double arm trigger loss $[\mathrm{mb}]$	T1/T2 single arm trigger loss $[\mathrm{mb}]$	Systematic error after extrapolation $[\mathrm{mb}]$
Minimum bias	58	0.3	0.06	0.06
Single diffractive	14	-	3	0.6
Double diffractive	7	2.8	0.3	0.1
Double Pomeron	1	0.2		

Inelastic event rate uncertainty ~1\%

Error of $\sigma_{\text {tot }}$

$$
\left\{\begin{array}{l}
\sim 1 \% @ \beta^{*}=1540 \mathrm{~m} \\
\sim 5 \% @ \beta^{*}=90 \mathrm{~m}
\end{array}\right.
$$

Diffractive forward protons, $\beta^{*}=90 \mathrm{~m}$

- Excellent horizontal beam position calibration at 220 m
- Good acceptance for ξ

Differential mass distribution in DPE

TOTEM

- Study of mass distributions via the 2 protons
- Trigger with $2 \mathrm{p}+\mathrm{T} 1 / \mathrm{T} 2$: rate $\sim 200 \mathrm{~Hz} @ \beta^{*}=90 \mathrm{~m}, \mathrm{~L}=10^{30} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$
- (TOTEM limit $\sim 2 \mathrm{kHz}$)
low/medium
luminosity
- $\quad \xi$ measured directly (TOTEM) or
- With rapidity gap $\Delta \eta=-\ln \xi \quad 1$. With calorimeters $\left.\xi=\sum E_{T}^{i} e^{\mp \eta_{i}} / \sqrt{s}\right\}$ (TOTEM+CMS)

14/03/2007
Hubert Niewiadomski, TOTEM, HERA-LHC Workshop

Summary

TOTEM

- TOTEM will be ready for first LHC runs in 2008 and can profit from early LHC beams
- TOTEM needs $\beta^{*}=1540 \mathrm{~m}$ optics to measure Total Cross Section with 1\% precision
- During first running (2008) an intermediate $\beta^{*}=90 \mathrm{~m}$ optics can be achieved by un-squeezing the existing injection optics (proposal to LHCC)
- In a few days TOTEM can measure $\sigma_{\text {tot }}$ with 5\% precision
- TOTEM can start studying soft diffraction with DPE + SD events in a wide mass range

Transverse proton displacement

$$
\begin{aligned}
& y(s)=v_{y}(s) \cdot y^{*}+L_{y}(s) \cdot \Theta_{y}^{*} \\
& x(s)=v_{x}(s) \cdot x^{*}+L_{x}(s) \cdot \Theta_{x}^{*}+\xi \cdot D(s) \\
& \xi=\Delta p / p
\end{aligned}
$$

Elastic scattering, t-acceptance

TOTEM

Double Pomeron Exchange (DPE) at low/medium luminosity

