TOTEM Physics Programme for the LHC Start

Hubert Niewiadomski

Brunel University / CERN

on behalf of the

TOTEM Collaboration

http://totem.web.cern.ch/Totem/

HERA - LHC Workshop 14 March 2007

Physics programme

Total cross section at 14TeV with a precision of 1%

Elastic pp scattering, 10⁻³ GeV² < -t < 10 GeV²

Soft Single & Central Diffraction

Low-x dynamics

Leading particle & energy flow in forward direction

Semi-hard + hard Single & Central Diffraction: production of jets, W, heavy flavours.....

Exclusive particle production in Central Diffraction

γγ & γp physics

Physics program for the LHC start Total cross section with a precision of about 5% Multiplicity distributions

Diffraction at low/medium luminosity: SD, DPE

TOTEM

W I T H	See talks by K. Oesterberg & M. Grothe
C M S	

T1 Telescope

TOTEM

Cathode Strip Chambers (CSC)

3.1 < |η| < 4.7

 5 planes with measurement of three coordinates per plane.

 3 degrees rotation and overlap between adjacent planes

 Primary vertex reconstruction (beam-gas interaction removal)

Trigger with anode wires

• Connected to new VFAT chips

T2 Telescope

- Gas Electron Multiplier (GEM)
- 5.3 < |η| < 6.5
- 10 half-planes @ 13.5 m from IP5
- Half-plane:
 - 512 strips (width 80 μm, pitch of 400 μm)
 - 65*24=1560 pads (2x2 mm² -> 7x7 mm²)
- Primary vertex reconstruction (beam-gas interaction removal)
- Trigger using (super) pads
- Detectors tested in a testbeam with new VFAT chips
- First beam profiles, cluster distributions and detector characteristics

40 cm

Roman Pots

TOTEM

- Measurement of very small proton scattering angles (few µrad)
- Vertical and horizontal pots mounted as close as possible to the beam
- BPM fixed to the structure gives precise position of the beam

Assembly of 8 RP units <image>

Roman Pot

Hubert Niewiadomski, TOTEM, HERA-L

Roman Pot detectors

TOTEM

10 planes of edgeless detectors

Leading proton detection at distances down to 10×σ(beam) + d **Need "edgeless" detectors** distance that are efficient up to the physical edge to minimize Overlap "d" 1100 beam **σ(beam) ≈ 0.1–0.6 mm** Overlap (optics dep.) = 8 mm 10 σ beam **Overlap of vertical** reconstructed tracks # and horizontal dets.

Si Edgeless Detectors for RP

- AC coupled microstrips made in planar technology with novel guardring design and biasing scheme
- In production, all expected by June 2007
- First measurement of leakage current at CERN:

60 nA at 200 V (excellent)

• Strong improvements on the cut at the sensitive edge

14/03/2007

Hubert Niewiadomski, TOTEM, H

VFAT-2 chip

- Trigger and tracking ASIC
- Digital output
- Designed for TOTEM, used by all detectors
- 128 channels, thresholds adjustable per channel
- I2C controlled
- Radiation Hardness and Single Event Upset protection
- Successfully tested together with T1 & T2 detectors in a test beam
 - Noise scans, delay scans, functionality testing
- On-going tests with RP detectors

Total cross section

14/03/2007

Elastic scattering

Necessary: optics with acceptance at low |t|: $\beta^*=1540m$ (difficult to have at the beginning – requires special injection optics); acceptance at very low |t|: |t| > 2 · 10⁻³ GeV²

Proposal submitted to LHCC:

 $\beta^*=90m$ (easier: un-squeezing of existing injection optics, $|t| > 3 \cdot 10^{-2} \text{ GeV}^2$)

Proposal: Optics with $\beta^* = 90$ m

- |t|-acceptance down to 0.03 GeV² , covering well the exponential region of $d\sigma/dt$;
- Typical luminosity L ~ $10^{28} 10^{29}$ cm⁻² s⁻¹
- elastic $y(220) = L_y \cdot \Theta_y^*$ $x(220) = v_x(s) \cdot x^*$ • parallel-to-point focusing only in vertical plane @ 220 m
- no emmission-angle dependence in horizontal displacement
- Thick beam usefull for commissioning of RP detectors

Extrapolation of the elastic cross-section to t = 0, β^* =90 m

Fitting function: $\frac{d\sigma}{dt} = A e^{B(t)t}$ with $B(t) = a + bt + ct^2$, $\int Ldt = 2 \text{ nb}^{-1} (5h, L=10^{29} \text{ cm}^{-2}\text{s}^{-1})$

Errors of extrapolation for different models (MC)

Errors of d σ /dt t \rightarrow 0 extrapolation, β *=90m

- Smearing effects due to beam divergence: -2% shift
- Statistical errors
- Uncertainty of effective length L_{eff}: 3% extrapolation offset
- RP position systematics less critical ($\sigma_{220 y}$ = 0.625 mm, $\Delta t/t \propto \Delta y/\sigma_y$)
- Model dependent deviations: ±1% (except Islam)

Total uncertainty < 4% @ β*=90m (~0.5% @ β* = 1540 m)

Inelastic event rate N_{inel}

Losses for TOTEM inelastic trigger

	σ [mb]	T1/T2 double arm trigger loss [mb]	T1/T2 single arm trigger loss [mb]	Systematic error after extrapolation [mb]
Minimum bias	58	0.3	0.06	0.06
Single diffractive	14	-	3	0.6
Double diffractive	7	2.8	0.3	0.1
Double Pomeron	1	0.2		0.02

Inelastic event rate uncertainty ~ 1%

Error of σ_{tot} { ~1 % @ $\beta^* = 1540 \text{ m}$ ~5 % @ $\beta^* = 90 \text{ m}$

Differential mass distribution in DPE

- Study of mass distributions via the 2 protons
 - Trigger with 2p+T1/T2: rate ~200Hz @ β^* =90m, L=10³⁰cm⁻²s⁻¹
 - (TOTEM limit ~2kHz)
- **ξ measured directly (TOTEM)** or
 - With rapidity gap $\Delta \eta$ =-ln ξ

• With rapidity gap
$$\Delta \eta$$
=-in ξ
• With calorimeters $\xi = \sum_{i} E_T^i e^{\mp \eta_i} / \sqrt{s}$ (TOTEM+CMS)

low/medium luminosity

Summary

- TOTEM will be ready for first LHC runs in 2008 and can profit from early LHC beams
- TOTEM needs β*=1540m optics to measure Total Cross Section with 1% precision
- During first running (2008) an intermediate β*=90m optics can be achieved by un-squeezing the existing injection optics (proposal to LHCC)
- In a few days TOTEM can measure σ_{tot} with 5% precision
- TOTEM can start studying soft diffraction with DPE + SD events in a wide mass range

s(m)

Double Pomeron Exchange (DPE) at low/medium luminosity

