Diffractive Structure Functions and Exclusive Production from CDF to LHC

> Konstantin Goulianos The Rockefeller University and the CDF Collaboration

Contents

> Introduction

- Elastic and total cross sections
- Soft diffraction
- Hard diffraction
- Exclusive Production

p-p Interactions

<u>Non-diffractive:</u> Color-exchange

Diffractive:

Colorless exchange with vacuum quantum numbers

<mark>rapidity gap</mark>

Incident hadrons acquire color and break apart

CONFINEMENT

Incident hadrons retain their quantum numbers remaining colorless pseudo-DECONFINEMENT

<u>Goal</u>: understand the QCD nature of the diffractive exchange

Diffractive pp Processes

HERA&LHC, 12-16 March 2007

Elastic, diffractive, and total cross section <u>@ 546 and 1800 GeV</u>

ELASTIC AND TOTAL CROSS SECTIONS

@ Tevatron: CDF and E710/811
→ use luminosity independent method ←

$$\sigma_T^2 \sim \frac{1}{L} \frac{1}{1+\rho^2} \frac{dN_{el}}{dt} \bigg|_{t=0} & & \sigma_T \sim \frac{1}{L} \left(N_{el} + N_{inel} \right)$$

optical theorem
$$\Rightarrow \qquad \sigma_T = \frac{16\pi}{1+\rho^2} \left(\frac{dN_{el}}{dt} \bigg|_{t=0} \right) \frac{1}{N_{el} + N_{inel}}$$

Alert:
 background N_{inel} yields small σ_T
 undetected N_{inel} yields large σ_T

Total Cross Sections: Regge fit

CMG fit: Covolan, Montagna, Goulianos PLB 389 (1995) 176

Simultaneous Regge fit to pp, π p, and Kp x-sections using the <u>eikonal approach</u> to ensure unitarity

 $\sigma \rightarrow s^{\varepsilon}$

E = 1.104 +/- 0.002

→ σ_{LHC} = 115 mb @14 TeV

HERA&LHC, 12-16 March 2007

σ_{T} : other approaches

eg, M. Block, arXiv:hep-ph/0601210 (2006)

→ fit data using analyticity constraints M. Block and F. Halzen, Phys. Rev. D 72, 036006

LHC:
$$\sigma_{tot} = 111.5 \pm 1.2 + 4.1 \text{ mb}$$

[PRL 89 201801 (2002)]

Ę

104

√s [GeV]

$$\sigma_{T}$$
 (LHC) = 107.3 ± 1.2 mb

$\sigma_{\mathsf{T}} \text{ and } \rho\text{-values from PDG}$

 ρ = ratio of real/imaginary parts of elastic scattering amplitude at t=0

σ_T ↓ optical theorem Im f_{el}(t=0) ↓ dispersion relations Re f_{el}(t=0)

N. Khuri and A. Martin: measuring ρ at the LHC tests discreteness of space-time

SOFT DIFFRACTION

Key words:

renormalization scaling QCD multi-gap

HERA&LHC, 12-16 March 2007

Diffraction from CDF to LHC

A Scaling Law in Diffraction

KG&JM, PRD 59 (1999) 114017

Factorization breaks down so as to ensure M²-scaling!

The QCD Connection

The exponential rise of $\sigma_T(\Delta y')$ is due to the increase of wee partons with $\Delta y'$ (E. Levin, An Introduction to Pomerons, Preprint DESY 98-120)

$$f_{el}(s,t) \propto e^{(\varepsilon + \alpha' t)\Delta y}$$

Elastic cross section: forward scattering amplitude

Total cross section: power law increase versus S

Renormalization removes the s-dependence \rightarrow SCALING

HERA&LHC, 12-16 March 2007

Diffraction from CDF to LHC

K. Goulianos

<u>Multi-gap Renormalization</u>

(KG, hep-ph/0205141)

HERA&LHC, 12-16 March 2007

Central and Double Gaps @ CDF

Double Diffraction Dissociation

> One central gap

Double Pomeron Exchange

> Two forward gaps

SDD: Single+Double Diffraction

> One forward + one central gap

Central & Double-Gap CDF Results

HERA&LHC, 12-16 March 2007

Diffraction from CDF to LHC

K. Goulianos

Gap Survival Probability

HARD DIFFRACTION

- Diffractive fractions
- Diffractive structure function
 factorization breakdown
- Restoring factorization
- Q² dependence
- t dependence
- Hard diffraction in QCD

JJ, W, b, J/ψ

η

dN/dŋ

Diffractive Fractions @ CDF

 $\overline{p}p \rightarrow (\cancel{X} + X) + gap$

Fraction: SD/ND ratio at 1800 GeV

	Fraction(%)
W	1.15 (0.55)
JJ	0.75 (0.10)
Ъ	0.62 (0.25)
J/ψ	1.45 (0.25)

All ratios ~ 1% →~ uniform suppression ~ FACTORIZATION !

Diffractive Structure Function: Breakdown of QCD Factorization

 β = momentum fraction of parton in Pomeron

The diffractive structure function at the Tevatron is suppressed by a factor of ~10 relative to expectation from pdf's measured by H1 at HERA

Similar suppression factor as in soft diffraction relative to Regge expectations!

Restoring QCD Factorization

The diffractive structure function measured on the proton side in events with a leading antiproton is NOT suppressed relative to predictions based on DDIS

Diffractive Structure Function: Q² dependence

HERA&LHC, 12-16 March 2007

Diffractive Structure Function: t- dependence

- Fit d σ /dt to a double exponential: $F = 0.9 \cdot e^{b_1 \cdot t} + 0.1 \cdot e^{b_2 \cdot t}$
- No diffraction dips
- No Q2 dependence in slope from inclusive to Q²~10⁴ GeV²

Same slope over entire region of 0 < Q² < 4,500 GeV² across soft and hard diffraction!

Hard Diffraction in QCD

Derive diffractive from inclusive PDFs and color factors

EXCLUSIVE PRODUCTION

Measure exclusive jj & $\gamma\gamma \rightarrow$

Bialas, Landshoff, Phys.Lett. B 256,540 (1991) Khoze, Martin, Ryskin, Eur. Phys. J. C23, 311 (2002); C25,391 (2002);C26,229 (2002) C. Royon, hep-ph/0308283 B. Cox, A. Pilkington, PRD 72, 094024 (2005) OTHER.

Clean discovery channel

Calibrate predictions for H production rates @ LHC

KMR: σ_H (LHC) ~ 3 fb S/B ~ 1 if Δ M ~ 1 GeV

<u>Search for exclusive dijets:</u> Measure dijet mass fraction

$$R_{jj} = \frac{M_{jj}}{M_{X} (all calorimeters)}$$

Look for signal as
$$M_{jj} \rightarrow 1$$

Search for exclusive $\gamma\gamma$

- \checkmark 3 candidate events found
- ✓ 1 (+2/-1) predicted
 from ExHuME MC*
- \checkmark background under study
- * See talk by V. Khoze

HERA&LHC, 12-16 March 2007

Exclusive Dijet Signal

R_{JJ}(excl): Data vs MC

Shape of excess of events at high R_{jj} is well described by both models

jj_{excl}: Exclusive Dijet Signal

COMPARISON Inclusive data vs MC @ b/c-jet data vs inclusive

JJ_{excl} : x-section vs $E_{T}(min)$

Comparison with hadron level predictions

CDF Run II Preliminary σ_{ji}excl (pb) Data corrected to the hadron level 10³ Exclusive DPE (DPEMC) 10² ion anani FxHuME 10 $a_{00}a_{00}$ stat.

syst. stat. error 0.03 < ξ_− < 0.08</p> 10⁻¹ 15 20 30 35 10 25 Jet E^{min}_T (GeV)

JJ_{excl} : cross section predictions

ExHuME Hadron-Level Differential Exclusive Dijet Cross Section vs Dijet Mass (dotted/red): Default ExHuME prediction

(points): Derived from CDF Run II Preliminary excl. dijet cross sections

Statistical and systematic errors are propagated from measured cross section uncertainties using ExHuME M_{jj} distribution shapes.

TEVATRON - what we have learnt

- $> M^2 scaling$
- Non-suppressed double-gap to single-gap ratios
- Pomeron: composite object made up from underlying pdf's subject to color constraints

LHC - what to do

- \succ Elastic and total cross sections & ρ -value
- High mass (>4 TeV) and multi-gap diffraction
- Exclusive production (FP420 project)
 Reduced bgnd for std Higgs to study properties
 Discovery channel for certain Higgs scenarios