Minijets in Deep Inelastic e-p Scattering at HERA.

Outline:

- * Motivation and Strategy
- * Selections
- $\ast\,$ Data Precision vs. MC
- * Summary and Outlook

Motivation 1(2)

- * The underlying event: particles produced by the following processes:
 - Beam remnant interactions, usually called Soft Underlying Event (SUE)
 - Multiple Interaction (MI)
- * Experimentally it is hard to distinguish between SUE, MI and Initial/Final State Radiation.

 \longrightarrow To measure regions sensitive to underlying event activity in DIS.

 \longrightarrow Models with MI and/or SUE are needed to describe 4-jet kinematic, x_{γ} distributions and energy flow in photoproduction at HERA. Do these models work at DIS?

 \longrightarrow To test different MC tuning with SUE and/or MI.

Strategy 1(4)

- * Select the jet with highest P_T^* in $\gamma^* p$ frame, the Leading Jet.
- * Define four regions in azimuthal:
 - Two Transverse regions: $60^{\circ} < |\Delta \phi^*| < 120^{\circ}$
 - Toward region: $|\Delta \phi^*| < 60^{\circ}.$
 - Away region: $|\Delta \phi^*| > 140^\circ$

The Toward and Away regions are sensitive to the hard part of the event.

Strategy 2(4)

- * The scalar E_T^* Sum of the particles, E_{TSum}^* , in the transverse regions is calculated for each event.
- * For each event, split the two Transverse regions into a low active region and a high active region according to E_{TSum}^* .

Strategy 3(4)

* In addition, select a subsample, Dijet sample, where the second hardest jet, Subleading Jet, is restricted to be in the Away region.

Strategy 4(4)

• Measure the jet multiplicity in the different $\Delta \phi^*$ regions as function of P_T^* of the Leading Jet.

$$< N_{MiniJet} > = \frac{\sum_{i=1}^{N_{ev}} N_{MiniJet,i}}{N_{ev}}$$

- Inclusive sample:
 - In bins of Q^2 .
 - In bins of η^{lab} of the leading jet
- Dijet sample:

- In bins of
$$x_{\gamma} = \frac{\sum_{i=1}^{2} P_{T,i}^* exp(\eta_i^*)}{2E_{\gamma}^*}$$

Selection 1(2)

DIS Cuts

$5 \text{ GeV}^2 <$	Q^2	$< 100 { m ~GeV^2}$
0.1 <	y	< 0.7
$9 \mathrm{GeV} <$	E_e	
200 GeV <	W	

Jets/Minijets are defined as: Inclusive k_t -algorithm jets (HCM)

Selection 2(2)

Leading Jet sample.The hardest jet with: $-1.7 < \eta^{lab} < 2.79$ 5 GeV < P_T

Dijet sample.Two hardest jets with: $-1.7 < \eta^{lab} < 2.79$ $5 \text{ GeV} < P_T$ and $|\phi_1^* - \phi_2^*| > 140^\circ$

Minijets

 $3 \text{ GeV} < P_T$ $-1.7 < \eta^{lab} < 2.79$

The P_T jet cuts are applied both in HCM and Lab frame

The data point are not official, therefore only data precision is shown. Data precision Inclusive sample Forward region: $0.5 < \eta_{lj} < 2.79$

Data precision Inclusive sample Central region: $-1.7 < \eta_{lj} < 0.5$

Data precision Dijet sample

Summary

- * Data precision as function P_T of the leading jet was presented.
- * MC with additional activities like MI (Pythia) gives additional activity in the transverse regions

Outlook

- * Get the data ready for DIS 2007
- * Play with the MC
- * In bins of W

Extra slides

Data precision Inclusive sample Forward region: $0.5 < \eta_{lj} < 2.79$

ResultInclusive sampleForward region: $0.5 < \eta_{lj} < 2.79$

Data precision Inclusive sample Central region: $-1.7 < \eta_{lj} < 0.5$

 $\begin{array}{l} \mbox{Result} \\ \mbox{Inclusive sample} \\ \mbox{Central region:} \\ -1.7 < \eta_{lj} < 0.5 \end{array}$

Data precision Dijet sample

