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do we need NNLO calculations?
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Jet production

dominat hard scattering process at LHC

important input to constrain gluon PDFs and αs

rich in potential signals of new physics:

− composite quarks

− SUSY

− extra gauge bosons, Z ′ and W ′

− Randall-Sundrum models (extra dimensions)
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tt̄ production

third generation is the least known
sector of the SM -except for the Higgs!-

tt̄ is key to measure top quark
properties

LHC will produce almost 1 tt̄ per second
at low luminosity!!

tt̄ is an important background for many
searches of New Physics

σ(tt̄)NLO ' 830 pb ± 15% (scale+PDFs)

[Bonciani et al.;Cacciari]

[CMS Physics TDR]
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Vector boson pair production

unique opportunity to probe the non-Abelian
gauge symmetry of the Standard Model

test the presence of anomalous couplings →

New Physics

important backgrounds for Higgs and SUSY
searches

mild NLO corrections with jet veto

important contributions from high pT region
[Dixon, Kunszt, Signer]
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Motivation

high precision (NNLO) calculations needed for LHC:
− processes used to measure fundamental parameters
− important backgrounds in the searches of new physics

necessity to develop general methods for these calculations,
capable of dealing with differential distributions, arbitrary cuts, etc

⇒ antenna subtraction method for e+e− can be extended to hadronic
collisions

⇒ first step: NLO antenna subtraction with hadronic initial states
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QCD corrections

amplitudes are singular due to soft and collinear radiation
Virtual corrections

explicit singularites (loop integration)

Real corrections
“potential” singularites (phase space)

Singularites are guaranteed to cancel between real and virtual contributions

... but only after phase space integration...

and phase space integration is either not possible -e.g. jets- or not
appropriate -e.g. differential cross sections-

how to extract the singularities from the real contributions?
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Different approaches

phase space slicing [Giele, Glover; Giele, Glover, Kosower]

− split the phase space volume into singular and non-singular regions

− in singular regions, matrix elements are approximated by their soft/collinear limits

− these pieces are integrated analytically

− and they cancel the explicit singularities of virtual components

− in the non-singular regions it is safe to integrate numerically

sector decomposition and expansion in plus distributions
[Anastasiou, Melnikov, Petriello]

− use sector decomposition of phase space integrals to isolate singularities

− explicit poles in ε are extracted before integration

− the finite coefficients are integrated numerically

− cancellations of poles take place after numerical integration

− delivers results at NNLO!!

methods based on subtraction
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Subtraction methods
∫

R dΦR+

∫

V dΦV =

∫

(R−Rc) dΦR+

∫
(

V +Rc
dΦR

dΦV

)

dΦV

Rc coincides with R in ALL singular regions

it usually require one or several phase space mappings

these mappings should allow phase space factorization: dΦR = dΦ′

R dΦV

Rc must be simple enough to be integrated analytically over dΦ′

R

Several implementations, differing in the construction of Rc and the phase space mappings:
⇒ Ellis-Kunszt-Soper method NLO
⇒ Catani, Seymour dipoles NLO
⇒ Grazzini, Frixione NNLO (e+e−)
⇒ Weinzierl NNLO
⇒ Somogyi, Trocsanyi, del Duca NNLO (e+e−) ⇐ Gabor’s talk starting in 15’!!
⇒ antennae: Kosower; Campbell, Cullen, Glover; Gehrmann-De Ridder, Gehrmann,
Glover NNLO (e+e−)
⇒ Catani, Grazzini NNLO (pp, colourless final state)
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Antenna subtraction

⇒ matrix elements factorize in singular limits
i

j

k

Uijk ×
I

K

pI and pK are combinations of pi, pj and pk only meaningful in the limit
i.e. if j ‖ k, pI = pi, pK = pj + pk

⇒ infrared factorization is universal
i

j

k

Uijk ×
I

K

⇒ we can exploit universality to build subtraction terms

i

j

k

0
I

K

i

j

k

I

K
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Antenna subtraction

⇒ counterterms are built in terms of antenna functions

X0

ijk =

i

j

k

I

K

⇒ each antenna interpolates between several singular limits

⇒ they have to be combined with mappings (i, j, k) → (I,K) also
interpolating between these limits
⇒ phase space factorizes and the subtraction terms are com-
bined with the virtual corrections to cancel poles in ε

I

K

dΦn

i

j

k

I

K

dΦijk+

I

K

dΦn
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Some details

⇑ use of colour ordered amplitudes to simplify the singular structure

⇑ antennae interpolate between several limits, fewer terms needed
compared to other subtraction approaches

⇑ antennae are just colour ordered matrix elements of physical processes

⇑ antennae can be integrated using well known techniques

last two points make NNLO extension relatively simpler than in other ap-
proaches

⇒ missing angular correlations, subtraction are not fully local, can be dealt
with by slicing the phase space

⇒ in practice, some antenna functions might need to be decomposed in
subantennae -with different associated mappings- to deal with with non-
ordered emissions and degenerate antennae
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Subtractions with hadrons in the initial states

We distinguish three configurations:

i

j

k

I

K

i

j

k

I

K

final-final

i

j

k

I

K

i

j

k

I

K

initial-final

i

k

j
I

K

i

k

j

I

K

initial-initial

each requires a set of antennae and a phase space mapping
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Subtraction terms (m jet production)

dσ̂R − dσ̂S,(ff) − dσ̂S,(if) − dσ̂S,(ii) = finite

dσ̂R = dΦm+1(k1, . . . , km+1; p1, p2) |Mm+1(k1, . . . , km+1; p1, p2)|
2 J (m+1)

m (k1, . . . , km+1)

dσ̂S,(ff) = dΦm+1(k1, . . . , km+1; p1, p2)

×
∑

j

X0
ijk |Mm(k1, . . . ,KI ,KK , . . . , km+1; p1, p2)|

2 J (m)
m (k1, . . . ,KI ,KK , . . . , km+1)

dσ̂S,(if) = dΦm+1(k1, . . . , km+1; p1, p2)

×
∑

j

X0
i,jk |Mm(k1, . . . ,KK , . . . , km+1;xp1, p2)|

2 J (m)
m (k1, . . . ,KK , . . . , km+1)

dσ̂S,(ii) = dΦm+1(k1, . . . , kj−1, kj , kj+1, . . . , km+1; p1, p2)
∑

j

X0
ik,j

∣

∣

∣
Mm(k̃1, . . . , k̃j−1, k̃j+1, . . . , k̃m+1;x1p1, x2p2)

∣

∣

∣

2
J (m)

m (k̃1, . . . , k̃j−1, k̃j+1, . . . , k̃m+1)
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NLO antenna functions

⇒ at NLO there are only 5 basic antenna functions:
- qgq̄ γ → qgq̄

- qgg χ̃ → g̃gg

- qq′q̄′ χ̃ → g̃q′q̄′

- ggg h → ggg

- qq̄g h → qq̄g

⇒ for initial-final and initial-initial configurations, one or two partons are
crossed to the initial state, i.e.

Aqgq̄ → Aq,gq, Ag,qq̄

⇒ the case qgg when a gluon is rotated to the initial state needs special
consideration (g → qg looks like q̄ → g or g → g depending on the limit)

Dg,qg = D′
g,qg + Dg,gq
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NLO mappings

⇒ phase space mappings (i, j, k) → (I,K) must:
1. interpolate between all the singular limits: j soft or collinear to either i or k

2. satisfy momentum conservation and keep all particles in their mass-shells
3. allow for phase space factorization

(4). NNLO extension: factorize in strongly ordered limits

⇒ final-final configurations are the easiest, 2 inmediately provides 3:

dΦn+1(k1, . . . , ki, kj , kk, . . . , kn+1; q) = dΦn(k1, . . . , KI , KK , . . . , kn+1; q)
1

P2
dΦ3(ki, kj , kk; KI+KK)

key point is that mapped momenta are integrated over

⇒ several possibilities, straightforward extensions to NNLO

⇒ integrated antenna functions

Xijk(ε) =
1

P2

∫

dΦ3 Xijk ∼ I(ij)k(sijk, ε) + Ii(jk)(sijk, ε) + O(ε0)
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NLO mappings

initial-final and initial-initial configurations are more involved:

⇒ one or the two hard radiators are in the initial state

⇒ only longitudinal component of initial state momenta can be mapped, otherwise
phase space doesn’t factorize

⇒ phase space mapping is totally defined by this constraint and momentum
conservation

⇒ phase space factorization now involves convolutions, i.e. for one initial state
radiator:

dΦm+1(k1, . . . , km+1; p, r) = dΦm(k1, . . . ,KK , . . . , km+1;xp, r)
Q2

2π
dΦ2(kj , kk; p, q)

dx

x

⇒ integrated antenna functions

Xi,jk(x, ε) =
Q2

2π

∫

dΦ2 Xi,jk ∼
(

I(ij)k(sijk, ε) + Ii(jk)(sijk, ε)
)

δ(1 − x) +
1

ε
P

(0)
(ij)i(x) + O(ε0)

⇒ initial-initial configurations require a mapping of ALL final state momenta -including
non QCD particles- still some freedom in the construction of the mapping
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Cancellation of singularities (m jet example)

σ̂V + dσ̂MF + dσ̂S,(ff) + dσ̂S,(if) + dσ̂S,(ii) = finite

dσ̂V = dΦm(k1, . . . , km; p1, p2)
∑

i,j

Iij(ε) |Mm(k1, . . . , km+1; p1, p2)|
2 J (m)

m (k1, . . . , km) + O(ε0)

dσ̂MF =

∫

dx

x

∑

i,j

1

ε
Pij(x) dΦm(k1, . . . , km;x p1, p2) |Mm(k1, . . . , km;x p1, p2)|

2 J (m)
m (k1, . . . , km)

dσ̂S,(ff) = dΦm(k1, . . . , km; p1, p2)X
0
ijk(ε) |Mm(k1, . . . , km+1; p1, p2)|

2 J (m)
m (k1, . . . , km)

dσ̂S,(if) =

∫

dx

x
X 0

i,jk(x, ε) dΦm(k1, . . . , km;x p1, p2) |Mm(k1, . . . , km;x p1, p2)|
2 J (m)

m (k1, . . . , km)

dσ̂S,(ii) =

∫

dx1

x1

dx2

x2
X 0

ik,j(x1, x2, ε)dΦm(k1, . . . , km;x1p1, x2p2) |Mm(k1, . . . , km;x1p1, x2p2)|
2 J (m)

m (k1, . . . , km)
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Constructing the counterterms (jet + vector boson production)

g + qi −→ g + qj + V

1 2

3

∣

∣

∣
M0

g1qi,g2qj

∣

∣

∣

2
= |Cij |

2 (v2
i + a2

i ) N2,qg

[

N A0
4(jq, 1̂g, 2g, îq̄) + N A0

4(jq, 2g, 1̂g, îq̄)
]

+ O(1/N)

singular limits

- 2× gluon 2 soft

- 2× gluon 2 ‖ gluon 1

- 1× gluon 2 ‖ quark j

- 1× quark j ‖ gluon 1
2 and 3 actually share D0

g,gqj
and D0

g,qjg

dσ̂S
qig,qjg

=
∑

j

|Cij |
2 (v2

i + a2
i )N2,qg dΦ3(kq, kg, q; pq, pg)

×
{

N
[

D0
qig,g A0

QiG,Qj
J

(1)
1 (KQj

) + D0
g,gqj

A0
qiG,Qj

J
(1)
1 (KQj

) + D0
g,qjg

A0
qiQ̄j ,G

J
(1)
1 (KG)

]

+ O(1/N)

1 32

Hera and the LHC - DESY , 12 - 16 March 2007 – p.19



Extending the framework to NNLO

⇒ all the pieces are knwon for e+e−

⇒ partial results for 3 jets production, final results are imminent
[Gehrman-De Ridder, Gehrmann, Glover]

For hadronic collisions:
antenna functions:
− simply obtained by crossing, some issues with the splittings of

some of them
− integrated versions must be calculated for each configuration:

working on them

phase space mappings:
− both initial-final and initial-initial NLO mappings have simple

NNLO extensions
− proper factorization in single soft or collinear limits
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Summary

first step towards completing a antenna subtraction formalism for
hadron colliders at NNLO

complete NLO framework

phase space mappings and antenna functions at NNLO for all
configurations

possible application of NLO antennae and mappings to shower
Monte Carlo’s [W. Giele, HP2 Workshop]

NNLO integrated antennae with one or two partons in the initial
state are on the way

...only missing piece besides ... a real, complete, calculation!
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