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� Method is very algorithmic as is to be expected in PT



Precision QCD
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� Within SM, precise determination of

� strong coupling constant αs

� parton density functions

� LHC parton luminosity

� electroweak parameters

� Beyond SM, accurate predictions for

� Higgs production

� New Physics production

� their backgrounds

� LO predictions: order of magnitude estimates (strong dependence on unphysical

renormalization and factorization scales)

� . . . so at least NLO corrections must be included (reduced scale dependence)
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� NNLO corrections may be relevant if:

� the NLO corrections are large

=⇒ Higgs production in gluon fusion (NLO corrections may be larger than 100%)

� the NLO error bands are too large to test theory vs. data

=⇒ open b-quark production in hadron collisions

� the main source of uncertainty in extracting info from data is due to NLO theory

=⇒ measurement of αs S. Bethke, 2006

αs(MZ) = 0.121 ± 0.001(experiment)±0.005(theory)

� NLO calculation is effectively LO

=⇒ energy distribution in jet cones

� . . .



Production rates at NNLO
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� The formal loop expansion for a producution rate to NNLO accuracy reads

σ = σLO + σNLO + σNNLO + . . .

� Consider m-jet production
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σNNLO = σRR
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� The three terms are separately IR divergent, but their sum is finite for IR safe

observables

� General strategy of subtraction: use approximate cross sections to redistribute the

singularities among the contributions

=⇒ construction of approx. cross sections made possible by universal IR structure
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� The approximate cross sections dσ
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� Each integral on the r.h.s. is finite in d = 4 provided J is IR safe



Devising approximate cross sections
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� Use known IR limits of squared matrix elements
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� We face two difficulties

� The various IR regions of the PS and thus the various IR limits overlap

=⇒ the overlaps must be disentangled: “matching of limits”

� The IR factorization formulae are only defined in the strict limits

=⇒ give unambiguous meaning away from the limits: “extension”
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� Only two types of limits

� Collinear limit

Cir|M
(0)
m+2|

2 ∝
1

sir
P̂ir ⊗ |M

(0)
m+1|

2

� Soft limit

Sr|M
(0)
m+2|

2 ∝
∑

i6=k

Sik(r)|M
(0)
m+1;(i,k)|

2



Matching the singly-unresolved limits
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� Only two types of limits

� Collinear limit

� Soft limit
Cir Sr

� The formal operator
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� Four different types of limits

� Triple collinear
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� Four different types of limits

� Triple collinear

� Doubly single collinear

� Doubly soft-collinear

� Double soft

Cirs Cir;js

Srs
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� The formal operator A2 counts each unresolved limit precisely once. . .
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� Four different types of limits

� Triple collinear

� Doubly single collinear

� Doubly soft-collinear

� Double soft

Cirs Cir;js
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� Four different types of limits

� Triple collinear

� Doubly single collinear

� Doubly soft-collinear

� Double soft
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� Four different types of limits

� Triple collinear

� Doubly single collinear

� Doubly soft-collinear

� Double soft

Cirs Cir;js

Srs

CSir;s

� The formal operator A2 counts each unresolved limit precisely once. . .

� . . . and thus
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Overlap of the singly- and doubly-unresolved limits
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� The singly- and doubly-unresolved limits overlap

=⇒ need dσ
RR,A12
m+2 to avoid double subtraction

� The role of dσ
RR,A12
m+2 is delicate

� in doubly-unresolved limits

=⇒ it needs to regularize dσ
RR,A1
m+2

� in singly-unresolved limits

=⇒ it needs to regularize dσ
RR,A2
m+2 and spurious singularities in dσ

RR,A1
m+2

� We find that

(A1 + A2 −A1A2)|M
(0)
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2

has the same singularity structure as

|M
(0)
m+2|

2

in all singly- and doubly-unresolved limits and is free of multiple subtractions



Extending the candidate subtraction terms
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� The action of the formal operators A1 and A2 defines candidate subtraction terms

that are however only well defined in the strict IR limits

=⇒ extend these candidate terms over the full PS

� The extension requires the specification of

Single unresolved

� single momentum mapping

{p}m+2 −→ {p̃}m+1

� momentum conservation
m+2∑

i=1

pi =
m+1∑

i=1

p̃i

� PS factorization

dφm+2 = dφm+1[dp1]

Double unresolved

� double momentum mapping

{p}m+2 −→ {p̃}m

� momentum conservation
m+2∑

i=1

pi =
m∑

i=1

p̃i

� PS factorization

dφm+2 = dφm[dp2]



Momentum mappings (for final state radiation)
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� Two types of single mappings (corresponding to two basic limits: collinear, soft)



Momentum mappings (for final state radiation)
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� Two types of single mappings (corresponding to two basic limits: collinear, soft)

� Collinear mapping
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Momentum mappings (for final state radiation)
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� Two types of single mappings (corresponding to two basic limits: collinear, soft)

� Soft mapping
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Momentum mappings (for final state radiation)

Gábor Somogyi A subtraction scheme for jet cross sections at NNLO – 12 / 15

� Four types of double mappings (corresponding to four basic limits)
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� Four types of double mappings (corresponding to four basic limits)

� Triple collinear mapping
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Momentum mappings (for final state radiation)
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� Four types of double mappings (corresponding to four basic limits)

� Doubly single collinear mapping
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� Four types of double mappings (corresponding to four basic limits)

� Double soft-collinear mapping
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√
1 − yr̂Q ,

p̂µ
ir =

1

1 − αir
(pµ

i + pµ
r − αirQ

µ) , p̂µ
n =

1

1 − αir
pµ

n ,

Q

1

b

b

b

i
r
s

b

b

b

m + 2

m+2
Cir

Q

1̂

b

b

b

îr
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Momentum mappings (for final state radiation)
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� Four types of double mappings (corresponding to four basic limits)

� Double soft-collinear mapping
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Momentum mappings (for final state radiation)
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� Four types of double mappings (corresponding to four basic limits)

� Double soft mapping

p̃µ
n = Λµ

ν [Q, (Q − pr − ps)/λrs](p
ν
n/λrs) , n 6= r, s ,

λrs =

√
1 −

(
y(rs)Q − yrs

)

Q

1

b

b

b

r

s

b

b

b

m + 2

m+2
Srs

Q

1̃

b

b

b

b

b

b

m̃ + 2

m
r

s
S

Q

1̃

b

b

b

b

b

b

m̃ + 2

m ⊗
r
s

(rs)



True subtraction terms
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� The momentum mappings define extensions of the limit formulae

=⇒ these extensions define true subtraction terms
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� The momentum mappings define extensions of the limit formulae

=⇒ these extensions define true subtraction terms

� Doubly-real subtraction terms
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(
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True subtraction terms
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� The momentum mappings define extensions of the limit formulae

=⇒ these extensions define true subtraction terms

� Doubly-real subtraction terms
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Limit Mapping PS fact
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� The momentum mappings define extensions of the limit formulae

=⇒ these extensions define true subtraction terms

� Doubly-real subtraction terms

dσNNLO
m+2 = dσRR

m+2Jm+2 − dσ
RR,A2
m+2 Jm −

(
dσ

RR,A1
m+2 Jm+1 − dσ

RR,A12
m+2 Jm

)

Limit Mapping PS fact

A1|M
(0)
m+2|

2 {p}m+2 −→ {p̃}m+1 dφm+2 = dφm+1[dp1]

A1|M
(0)
m+2|

2 A1|M
(0)
m+2|

2 dσ
RR,A1
m+2 = dφm+1[dp1]A1|M

(0)
m+2|

2



True subtraction terms
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� The momentum mappings define extensions of the limit formulae

=⇒ these extensions define true subtraction terms

� Doubly-real subtraction terms

dσNNLO
m+2 = dσRR

m+2Jm+2 − dσ
RR,A2
m+2 Jm −

(
dσ

RR,A1
m+2 Jm+1 − dσ

RR,A12
m+2 Jm

)

Limit Mapping PS fact

A2|M
(0)
m+2|

2 {p}m+2 −→ {p̃}m dφm+2 = dφm[dp2]

A2|M
(0)
m+2|

2 A1|M
(0)
m+2|

2 dσ
RR,A2
m+2 = dφm[dp2]A2|M

(0)
m+2|

2
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� The momentum mappings define extensions of the limit formulae

=⇒ these extensions define true subtraction terms

� Doubly-real subtraction terms

dσNNLO
m+2 = dσRR

m+2Jm+2 − dσ
RR,A2
m+2 Jm −

(
dσ

RR,A1
m+2 Jm+1 − dσ

RR,A12
m+2 Jm

)

Limit Mapping PS fact

A1A2|M
(0)
m+2|

2 {p}m+2 → {p̂}m+1 → {p̃}m dφm+2 = dφm[dp1][dp1]

A12|M
(0)
m+2|

2 A1|M
(0)
m+2|

2dσ
RR,A12
m+2 = dφm[dp1][dp1]A12|M

(0)
m+2|

2
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� The momentum mappings define extensions of the limit formulae

=⇒ these extensions define true subtraction terms

� Doubly-real subtraction terms

dσNNLO
m+2 = dσRR

m+2Jm+2 − dσ
RR,A2
m+2 Jm −

(
dσ

RR,A1
m+2 Jm+1 − dσ

RR,A12
m+2 Jm

)

� Real-virtual subtraction terms

dσNNLO
m+1 =

(
dσRV

m+1 +
∫
1 dσ

RR,A1
m+2

)
Jm+1 −

[
dσ

RV,A1
m+1 +

( ∫
1 dσ

RR,A1
m+2

)
A1

]
Jm
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� The momentum mappings define extensions of the limit formulae

=⇒ these extensions define true subtraction terms

� Doubly-real subtraction terms

dσNNLO
m+2 = dσRR

m+2Jm+2 − dσ
RR,A2
m+2 Jm −

(
dσ

RR,A1
m+2 Jm+1 − dσ

RR,A12
m+2 Jm

)

� Real-virtual subtraction terms

dσNNLO
m+1 =

(
dσRV

m+1 +
∫
1 dσ

RR,A1
m+2

)
Jm+1 −

[
dσ

RV,A1
m+1 +

( ∫
1 dσ

RR,A1
m+2

)
A1

]
Jm

� Integrating dσ
RR,A1
m+2 over the factorized phase space =⇒

∫
1 dσ

RR,A1
m+2
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� The momentum mappings define extensions of the limit formulae

=⇒ these extensions define true subtraction terms

� Doubly-real subtraction terms

dσNNLO
m+2 = dσRR

m+2Jm+2 − dσ
RR,A2
m+2 Jm −

(
dσ

RR,A1
m+2 Jm+1 − dσ

RR,A12
m+2 Jm

)

� Real-virtual subtraction terms

dσNNLO
m+1 =

(
dσRV

m+1 +
∫
1 dσ

RR,A1
m+2

)
Jm+1 −

[
dσ

RV,A1
m+1 +

( ∫
1 dσ

RR,A1
m+2

)
A1

]
Jm

� Integrating dσ
RR,A1
m+2 over the factorized phase space =⇒

∫
1 dσ

RR,A1
m+2

� We use the same construction as in the RR case to define

2Re〈M
(0)
m+1|M

(1)
m+1〉 =⇒ dσ

RV,A1
m+1∫

1 dσ
RR,A1
m+2 =⇒

( ∫
1 dσ

RR,A1
m+2

)
A1
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� All approximate cross sections explicitly defined for final state radiation (i.e. for

e+e− → m jets for any m)

� they are fully local: all colour and azimuthal correlations correctly accounted for

� they have been checked for e+e− → 3 jets: the regularized RR and RV pieces

(i.e. dσNNLO
5 and dσNNLO

4 ) are finite

n 〈(1 − t)n〉RV/101 〈Cn〉RV/101 〈(1 − t)n〉RR 〈Cn〉RR

1 123 ± 1 433 ± 5 −92.7 ± 3.4 −344 ± 14
2 25.5 ± 0.2 325 ± 2 −3.07 ± 0.43 −142 ± 3
3 4.79 ± 0.03 180 ± 1 2.01 ± 0.12 6.29 ± 1.87

� No new concepts needed to include initial state radiation

� cross the limit formulae (only collinear formulae change)

� generalize the momentum mappings
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� Set up a subtraction scheme for computing NNLO corrections to jet cross sections: the

calculation is organised into 3 pieces: RR, RV and VV

� Approximate cross sections defined in a two step process

� carefully match limits (as embodied in the formal operators A1 and A2)

� extend formulae over full phase space (mom. mappings and PS fact.)

� Constructed all approximate cross sections for final state radiation explicitly

� counterterms fully local

� RR and RV contributions are finite as required for e+e− → 3 jets

� To do

� Integrate dσ
RR,A2
m+2 , dσ

RR,A12
m+2 , dσ

RV,A1
m+1 and

( ∫
1 dσ

RR,A1
m+2

)
A1 analytically and

combine with two-loop squared matrix element to get VV piece

� Approximate cross sections for initial state radiation
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