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Precision QCD

B Within SM, precise determination of
[0 strong coupling constant o
[0 parton density functions
[0 LHC parton luminosity
[]

electroweak parameters

B Beyond SM, accurate predictions for

[0 Higgs production
1 New Physics production
[0 their backgrounds
B LO predictions: order of magnitude estimates (strong dependence on unphysical
renormalization and factorization scales)

B ...so atleast NLO corrections must be included (reduced scale dependence)
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Beyond NLO — motivations

B NNLO corrections may be relevant if:

[0 the NLO corrections are large
— Higgs production in gluon fusion (NLO corrections may be larger than 100%)

[J the NLO error bands are too large to test theory vs. data
— open b-quark production in hadron collisions

[J the main source of uncertainty in extracting info from data is due to NLO theory
—> measurement of o S. Bethke, 2006

as(Myz) = 0.121 4 0.001 (experiment)£0.005(theory)

[0 NLO calculation is effectively LO
— energy distribution in jet cones
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Production rates at NNLO

B The formal loop expansion for a producution rate to NNLO accuracy reads

O':O'LO—|—O'NLO—|—O'NNLO—|—...

B Consider m-jet production
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Subtraction at NNLO

= Jinao dam+2Jm+2 ' Implicit IR pole from PS integral
‘ Explicit IR pole from loop integral
‘|—f dU 1Jm+1 @n P '
m+1 m+- Implicit IR pole from PS integral

—|_fm do ¥V, :‘ Explicit IR pole from loop integral

B The three terms are separately IR divergent, but their sum is finite for IR safe
observables

B General strategy of subtraction: use approximate cross sections to redistribute the
singularities among the contributions
——> construction of approx. cross sections made possible by universal IR structure
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Subtraction at NNLO

NNLO _ _NNLO NNLO NNLO __
9 — Jm+2 + Jm—i—l + Om —

RR,A RR,A RR,A
— Jm+2 {d0m+2‘]m+2 d0m+2 “Im = (d Ot Im41 — d0m+2 12‘]7”)}
RR,A RV,A RR,A
+fm—|—1{(d0 1—|_f1 Om+-2 1)Jm+1_ [dam—l—ll + (fl Om+-2 1) }Jm}

o QY oy (dots = donfs?) + Jy [do o+ (ot ) o

A4 A
B The approximate cross sections do Ijt and da 2 regularize the singly- and

RR,A
doubly-unresolved limits of do, -, their overlap is added back in do,,, /5"
: : A A :
B The approximate cross sections do \:L ! and ( fl dailj‘r’Q 1>A1 regularize the

RR,A
singly-unresolved limits of dov% | and [, do, 5"

B Each integral on the r.h.s. is finite in d = 4 provided J is IR safe
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Devising approximate cross sections

B Use known IR limits of squared matrix elements

A
E’I“ —————————————— I———I
) © 2 1 2 (0))2
My C,.! CirMuia|” o P & [ Mo
m | ’L’)"I r
I | .
(0) 2 Sik (0) 2
_______ . _______i___i Sy |My) | oczzl;sirskrwm;(i’k)\
i’ | L, ’
cos 0,

B \We face two difficulties

[1 The various IR regions of the PS and thus the various IR limits overlap
—> the overlaps must be disentangled: “matching of limits”

[0 The IR factorization formulae are only defined in the strict limits
—> give unambiguous meaning away from the limits: “extension”
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Matching the singly-unresolved limits

B Only two types of limits

[0 Collinear limit |
2 2
zr‘Mm_|_2‘ X S_PZT %Y ‘Mm—l—l‘

r

1 Soft limit

0 0
S, (MO, o 3 S ()M, P
itk
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Matching the singly-unresolved limits

Only two types of limits

1 Collinear limit

1 Soft limit

B The formal operator

counts each unresolved limit precisely once (it is free of double subtractions), so
0) 2
Ay ’Mm—i—2’ , A12Re(M m+1‘Mm+1> ;
has the same singly-unresolved singularity structure as

MOL12 2Re(MO MWDy

Gabor Somogyi A subtraction scheme for jet cross sections at NNLO — 8/ 15



Matching the doubly-unresolved limits

B Four different types of limits
1 Triple collinear
0) 12, 1 7 2
zr8|M( +2| 2 —Lirs ® |M7(72)|

1rs
[0 Doubly single collinear

0) A~ o~
ZT,jS’M( _|_2’2 . Pz'ers Y ’MgrOL)P
SirSjs

[0 Doubly soft-collinear

1 A
CSirsl Myl o —Sitls) Pir @ |My

[1 Double soft

0 0
Ss| Mo o< S (M)Sju(8) M P = 2CaSin(r, ) ML [
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Matching the doubly-unresolved limits

B Four different types of limits

1 Triple collinear

Doubly single collinear

[]
[0 Doubly soft-collinear
[]

Double soft

B The formal operator A9 counts each unresolved limit precisely once. . .

A = YY{Y[ et Y 1O csm]+sm

r o s#Er S i#Tr,s ]75@7"3
1
— Z [§Cirscsir;s + Z §Ci7~;j3CSir;3 + §CZ‘7~SS7=3 + CSir;sSTs

15#7T,8 JjF#i,r,s
+ Z %Cir;jssrs] + Z [C’iTSGiT;SSTS + Z Cir;j8$iT;SST8]}

Ji,r,s i, JFLTS
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Matching the doubly-unresolved limits

B Four different types of limits

1 Triple collinear

Doubly single collinear

[]
[0 Doubly soft-collinear
[]

Double soft

B The formal operator A9 counts each unresolved limit precisely once. . .
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Matching the doubly-unresolved limits

Four different types of limits

1 Triple collinear

Doubly single collinear

[]
[0 Doubly soft-collinear
[]

Double soft

B The formal operator A9 counts each unresolved limit precisely once. . .
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Matching the doubly-unresolved limits

Four different types of limits

1 Triple collinear

Doubly single collinear

[]
[0 Doubly soft-collinear
[]

Double soft

B The formal operator A9 counts each unresolved limit precisely once. . .

B ...andthus )
0) 2
A2’Mm—|—2’

has the same doubly-unresolved singularity structure as

0
M2
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Overlap of the singly- and doubly-unresolved limits

The singly- and doubly-unresolved limits overlap
—> need daili’?” to avoid double subtraction

RR.A,, . i
B The role of dam+’2 12 is delicate

[1 in doubly-unresolved limits
: : RR,A
— it needs to regularize do,, /5"

1 in singly-unresolved limits

: : RR,A, RR,A
—> it needs to regularize do M2 2 and spurious singularities in do !

m—+2

B We find that
(Ay+ Ay — AjAg) MY )

has the same singularity structure as
2
|Mm—|—2|
in all singly- and doubly-unresolved limits and is free of multiple subtractions
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Extending the candidate subtraction terms

The action of the formal operators A; and A5 defines candidate subtraction terms
that are however only well defined in the strict IR limits
—> extend these candidate terms over the full PS

B The extension requires the specification of

Single unresolved Double unresolved
[0 single momentum mapping [1 double momentum mapping
{p}m—l—Z - {ﬁ}m—I—l {p}m—l—Z - {ﬁ}m
[J  momentum conservation [J  momentum conservation
m—+2 m-+1 m—+2 m
D _pi=) b D _pi=) b
i=1 i=1 i=1 i=1
[0 PS factorization [1 PS factorization
de,, 1o = de,, 11[dp1] de,, 1o = dé,, |dp2]
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Momentum mappings (for final state radiation)

B Two types of single mappings (corresponding to two basic limits: collinear, soft)
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Momentum mappings (for final state radiation)

B Two types of single mappings (corresponding to two basic limits: collinear, soft)

B Collinear mapping

1 1

S B o H e S
= (pF 4 pt — QM) —
Pir =9 Qi i+ pr Q") Pn=1_ Qi

ph, nFEi,r

1
= , _ 2 _ :
Qi 9 [y(zfr)Q \/y(ZT)Q 4yzfr

1
—(m+
Q

m + 2 m + 2
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Momentum mappings (for final state radiation)

B Two types of single mappings (corresponding to two basic limits: collinear, soft)

B Soft mapping

Pp =A1Q. (Q —pr)/Al(on/Ar) s nFET, A =1/1-yrq,

2(K + K)*(K + K), . 2KHEK,
(K + K)? K2

AY[K, K] = gl —
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Momentum mappings (for final state radiation)

B Four types of double mappings (corresponding to four basic limits)
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Momentum mappings (for final state radiation)

B Four types of double mappings (corresponding to four basic limits)

B Triple collinear mapping

. 1 _ 1

péj;ns — 1 — s (pf _|_p7/f +pg - &iTSQM) 9 p/erL — 1 — i
1 2

Qljrs =— 5 [y(zrs)Q - \/y(zrs)Q - 4y’i7“8

pfrf,? n#qﬂll"?s

T
T S

(irs)
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Momentum mappings (for final state radiation)

B Four types of double mappings (corresponding to four basic limits)

B Doubly single collinear mapping

~ p;,'i —|_p7'L“L — Oéz'rQ'u ]5“ B p? +p/; — Oést'u
o : s =

— (s 1 — ajr — Qjs
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Momentum mappings (for final state radiation)

B Four types of double mappings (corresponding to four basic limits)

B Double soft-collinear mapping

Pn = AR (Q = Ds)/As](Dr/As), n#Frs,  As=+/1—-uiq,

1 1

S E_ o OM AN — p
l_air(pﬁrpr Q") P R
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Momentum mappings (for final state radiation)

B Four types of double mappings (corresponding to four basic limits)

B Double soft-collinear mapping

Pn = AR (Q = Ds)/As](Dr/As), n#Frs,  As=+/1—-uiq,

1 1

S E_ o OM AN — p
l_air(pﬁrpr Q") P R

R [—r @ [o—3

m + 2
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Momentum mappings (for final state radiation)

B Four types of double mappings (corresponding to four basic limits)

B Double soft mapping

= AQ, (Q —pr — ps)/ANs] (P /Ars), nE TS,

Ars = \/ 1 — (y(rs)Q - yrs>

T

T S
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True subtraction terms

B The momentum mappings define extensions of the limit formulae
— these extensions define true subtraction terms
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True subtraction terms

B The momentum mappings define extensions of the limit formulae
— these extensions define true subtraction terms

B Doubly-real subtraction terms

NNLO __ RR RR7A2 RR7A1 RR7A12
doy, 157 = doytodmy2 — doy, 5 "I — <d0m+2 Jmt1 —doy, 5 I
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True subtraction terms

B The momentum mappings define extensions of the limit formulae
— these extensions define true subtraction terms

B Doubly-real subtraction terms

NNLO __ RR7A2 RR7A1 RR7A12
dop5” = dogtodmss — doy, 5 2 I — <d0m+2 Jm1 —dog, 5 Im

Limit Mapping PS fact
0) -
A My Ploce — (Bhmer by = Aoy, [dpi]
A \Mm+2\2
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True subtraction terms

B The momentum mappings define extensions of the limit formulae
— these extensions define true subtraction terms

B Doubly-real subtraction terms

NNLO __ RR7A2 RR7A1 RR7A12
doNNLO — qoRR, 70— doliitie g <dam M Ty — doiihz g

Limit Mapping PS fact
0 -
A1|M£n)+2|2 {p}m—I—Q - {p}m—I—l Aoy, 40 = d¢m+1[dp1]
RR,A
A ‘Mm—|—2‘2 g do_m—I—Q b= d¢m+1[dp1]A1‘Mm—l—2’2
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True subtraction terms

B The momentum mappings define extensions of the limit formulae
— these extensions define true subtraction terms

B Doubly-real subtraction terms

NNLO RR7A2 RR7A1 RR7A12

Limit Mapping PS fact

‘A2|'/\/lm—|—2|2 {p}m—I—Q - {ﬁ}m d¢m+2 — d¢m [dp2]

Y

RR,A
do Om+2 ° =do, [dPQ]AQ‘MmH’z

Y

A MY, 2
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True subtraction terms

B The momentum mappings define extensions of the limit formulae
— these extensions define true subtraction terms

B Doubly-real subtraction terms

NNLO RR7A2 RR7A1 RR7A12

Limit Mapping PS fact

AtAIMOL12 (phis — (Bl — (Bl dbyee = do,,[dpi][dpi]

Y

AH\MWP > doMz — qg, [dpy)[dpr ] Asg| MO, 2
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True subtraction terms

The momentum mappings define extensions of the limit formulae
— these extensions define true subtraction terms

B Doubly-real subtraction terms

dO‘NNLO

RR,A RR,A RR,A
m—+2 do-m—i—2 Jm—I-Q do,, 5" ' e

B Real-virtual subtraction terms

NNLO _ ShA RV, A4 RR,A1) A
do, 17 —( Ot + J1 40035 ") T — |dop, 00+ [y doyyn )M | I
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True subtraction terms

The momentum mappings define extensions of the limit formulae
— these extensions define true subtraction terms

B Doubly-real subtraction terms
NNLO RR7A2 RR7A1 RR7A12
B Real-virtual subtraction terms

NNLO __ RR,A, RV, A, RR,A,
d0m+1 _( m+1—|—f1 Om+2 ) m+1 = [d0m+1 + fl Om—+2 Im

RR,A,

A
O Integrating do,,, R over the factorized phase space —> f1 o
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True subtraction terms

The momentum mappings define extensions of the limit formulae
— these extensions define true subtraction terms

B Doubly-real subtraction terms
NNLO RR7A2 RR7A1 RR7A12

B Real-virtual subtraction terms
NNLO __ RR,A; RV,A, RR,A;
dogyi (da bt f1 Om+2 ) Jm+1 — [d0m+1 + (f1 Om+2 Im

RR,A,

A
O Integrating do,, R’ ' over the factorized phase space = [, do, %

[0  We use the same construction as in the RR case to define

RV,A
2Re(M m—|—1|Mm—|—1> — do,, /1"
RR,A RR,A
f1 d0m+2 ' — (fl T m42 1)
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Remarks

B All approximate cross sections explicitly defined for final state radiation (i.e. for
eTe” — m jets for any m)

[1 they are fully local: all colour and azimuthal correlations correctly accounted for

[ they have been checked for ete™ — 3 jets: the regularized RR and RV pieces
(i.e. dJ5NNLO and da4NNLO) are finite

n | ((1—6)"rv/10" | (C")ry/10" | (1 —)")rr | (C™)mr

1 123+ 1 433 += 5 —92.7+34 —344 + 14
2 25.5+0.2 325 + 2 —3.07 +=0.43 —142 + 3
3 4.79 +0.03 180+ 1 2.01 =0.12 6.29 + 1.87

B No new concepts needed to include initial state radiation

1 cross the limit formulae (only collinear formulae change)

[J generalize the momentum mappings
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Conclusions

Set up a subtraction scheme for computing NNLO corrections to jet cross sections: the
calculation is organised into 3 pieces: RR, RV and VV

B Approximate cross sections defined in a two step process

0 carefully match limits (as embodied in the formal operators A1 and A»)

[0 extend formulae over full phase space (mom. mappings and PS fact.)

B Constructed all approximate cross sections for final state radiation explicitly

[0 counterterms fully local
[0 RR and RV contributions are finite as required for eTe™ — 3 jets

B Todo

RR,A, RR,A RV,A, RR,A;\ A, .
O Integrate do,, 5 *, do,, 5%, do, ;" and f1 do,, 5 analytically and

combine with two-loop squared matrix element to get VV piece

[0 Approximate cross sections for initial state radiation
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