A subtraction scheme for jet cross sections at NNLO

Gábor Somogyi with
V. Del Duca and Z. Trócsányi

DESY Hamburg, 15 March 2007

Outline

- Motivations
- Production rates at NNLO
- Subtraction at NNLO
- Constructing the approximate cross sections
\square Matching of limits
\square Momentum mappings
\square True subtraction terms
- Conclusions

Outline

- Motivations
- Production rates at NNLO
- Subtraction at NNLO
- Constructing the approximate cross sections
\square Matching of limits
\square Momentum mappings
\square True subtraction terms
- Conclusions
- Method is very algorithmic as is to be expected in PT

Precision QCD

- Within SM, precise determination of
\square strong coupling constant α_{s}
\square parton density functions
$\square \quad$ LHC parton luminosity
\square electroweak parameters
- Beyond SM, accurate predictions for
\square Higgs production
\square New Physics production
\square their backgrounds
- LO predictions: order of magnitude estimates (strong dependence on unphysical renormalization and factorization scales)
- ...so at least NLO corrections must be included (reduced scale dependence)

Beyond NLO - motivations

- NNLO corrections may be relevant if:
\square the NLO corrections are large
\Longrightarrow Higgs production in gluon fusion (NLO corrections may be larger than 100\%)
\square the NLO error bands are too large to test theory vs. data \Longrightarrow open b-quark production in hadron collisions
\square the main source of uncertainty in extracting info from data is due to NLO theory \Longrightarrow measurement of α_{s}
S. Bethke, 2006

$$
\alpha_{\mathrm{S}}\left(M_{Z}\right)=0.121 \pm 0.001 \text { (experiment) } \pm 0.005 \text { (theory) }
$$

$\square \quad$ NLO calculation is effectively LO
\Longrightarrow energy distribution in jet cones...

Production rates at NNLO

- The formal loop expansion for a producution rate to NNLO accuracy reads

$$
\sigma=\sigma^{\mathrm{LO}}+\sigma^{\mathrm{NLO}}+\sigma^{\mathrm{NNLO}}+\ldots
$$

■ Consider m-jet production
\square LO

$$
\sigma^{\mathrm{LO}}=\sigma_{m}^{\mathrm{B}}=\int \mathrm{d} \phi_{m}\left|\mathcal{M}_{m}^{(0)}\right|^{2} J_{m}
$$

$$
\sigma^{\mathrm{NLO}}=\sigma_{m+1}^{\mathrm{R}}+\sigma_{m}^{\mathrm{V}}=\int \mathrm{d} \phi_{m+1}\left|\mathcal{M}_{m+1}^{(0)}\right|^{2} J_{m+1}+\int \mathrm{d} \phi_{m} 2 \operatorname{Re}\left\langle\mathcal{M}_{m}^{(0)} \mid \mathcal{M}_{m}^{(1)}\right\rangle J_{m}
$$

\square NNLO

$$
\begin{aligned}
& \sigma^{\mathrm{NNLO}}=\sigma_{m+2}^{\mathrm{RR}}+\sigma_{m+1}^{\mathrm{RV}}+\sigma_{m}^{\mathrm{VV}}=\int \mathrm{d} \phi_{m+2}\left|\mathcal{M}_{m+2}^{(0)}\right|^{2} J_{m+2}+ \\
& +\int \mathrm{d} \phi_{m+1} 2 \operatorname{Re}\left\langle\mathcal{M}_{m+1}^{(0)} \mid \mathcal{M}_{m+1}^{(1)}\right\rangle J_{m+1}+\int \mathrm{d} \phi_{m}\left[\left|\mathcal{M}_{m}^{(1)}\right|^{2}+2 \operatorname{Re}\left\langle\mathcal{M}_{m}^{(0)} \mid \mathcal{M}_{m}^{(2)}\right\rangle\right] J_{m}
\end{aligned}
$$

Production rates at NNLO

- The formal loop expansion for a producution rate to NNLO accuracy reads

$$
\sigma=\sigma^{\mathrm{LO}}+\sigma^{\mathrm{NLO}}+\sigma^{\mathrm{NNLO}}+\ldots
$$

■ Consider m-jet production
\square LO

$$
\sigma^{\mathrm{LO}}=\sigma_{m}^{\mathrm{B}}=\int \mathrm{d} \phi_{m}\left|\mathcal{M}_{m}^{(0)}\right|^{2} J_{m}
$$

\square NLO

$$
\sigma^{\mathrm{NLO}}=\sigma_{m+1}^{\mathrm{R}}+\sigma_{m}^{\mathrm{V}}=\int \mathrm{d} \phi_{m+1}\left|\mathcal{M}_{m+1}^{(0)}\right|^{2} J_{m+1}+\int \mathrm{d} \phi_{m} 2 \operatorname{Re}\left\langle\mathcal{M}_{m}^{(0)} \mid \mathcal{M}_{m}^{(1)}\right\rangle J_{m}
$$

\square NNLO

$$
\begin{aligned}
& \sigma^{\mathrm{NNLO}}=\sigma_{m+2}^{\mathrm{RR}}+\sigma_{m+1}^{\mathrm{RV}}+\sigma_{m}^{\mathrm{VV}}=\int \mathrm{d} \phi_{m+2}\left|\mathcal{M}_{m+2}^{(0)}\right|^{2} J_{m+2}+ \\
& +\int \mathrm{d} \phi_{m+1} 2 \operatorname{Re}\left\langle\mathcal{M}_{m+1}^{(0)} \mid \mathcal{M}_{m+1}^{(1)}\right\rangle J_{m+1}+\int \mathrm{d} \phi_{m}\left[\left|\mathcal{M}_{m}^{(1)}\right|^{2}+2 \operatorname{Re}\left\langle\mathcal{M}_{m}^{(0)} \mid \mathcal{M}_{m}^{(2)}\right\rangle\right] J_{m}
\end{aligned}
$$

Subtraction at NNLO

$$
\begin{aligned}
& \sigma^{\mathrm{NNLO}}=\sigma_{m+2}^{\mathrm{RR}}+\sigma_{m+1}^{\mathrm{RV}}+\sigma_{m}^{\mathrm{VV}}= \\
& =\int_{m+2} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}} J_{m+2} \\
& +\int_{m+1} \mathrm{~d} \sigma_{m+1}^{\mathrm{RV}} J_{m+1} \\
& +\int_{m} \mathrm{~d} \sigma_{m}^{\mathrm{VV}} J_{m}
\end{aligned}
$$

Implicit IR pole from PS integral
$\left\{\begin{array}{l}\text { Explicit IR pole from loop integral } \\ \text { Implicit IR pole from PS integral }\end{array}\right.$
Explicit IR pole from loop integral

- The three terms are separately IR divergent, but their sum is finite for IR safe observables
- General strategy of subtraction: use approximate cross sections to redistribute the singularities among the contributions
\Longrightarrow construction of approx. cross sections made possible by universal IR structure

Subtraction at NNLO

$$
\begin{aligned}
& \sigma^{\mathrm{NNLO}}=\sigma_{m+2}^{\mathrm{NNLO}}+\sigma_{m+1}^{\mathrm{NNLO}}+\sigma_{m}^{\mathrm{NNLO}}= \\
& =\int_{m+2}\left\{\mathrm{~d} \sigma_{m+2}^{\mathrm{RR}} J_{m+2}-\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{2}} J_{m}-\left(\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}} J_{m+1}-\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{12}} J_{m}\right)\right\} \\
& +\int_{m+1}\left\{\left(\mathrm{~d} \sigma_{m+1}^{\mathrm{RV}}+\int_{1} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}}\right) J_{m+1}-\left[\mathrm{d} \sigma_{m+1}^{\mathrm{RV}, \mathrm{~A}_{1}}+\left(\int_{1} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}}\right) \mathrm{A}_{1}\right] J_{m}\right\} \\
& +\int_{m}\left\{\mathrm{~d} \sigma_{m}^{\mathrm{VV}}+\int_{2}\left(\mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{2}}-\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{12}}\right)+\int_{1}\left[\mathrm{~d} \sigma_{m+1}^{\mathrm{RV}, \mathrm{~A}_{1}}+\left(\int_{1} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}_{2}, \mathrm{~A}_{1}}\right) \mathrm{A}_{1}\right]\right\} J_{m}
\end{aligned}
$$

- The approximate cross sections $\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{A}_{1}}$ and $\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{A}_{2}}$ regularize the singly- and doubly-unresolved limits of $\mathrm{d} \sigma_{m+2}^{\mathrm{RR}}$, their overlap is added back in $\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{A}_{12}}$
- The approximate cross sections $\mathrm{d} \sigma_{m+1}^{\mathrm{RV}, \mathrm{A}_{1}}$ and $\left(\int_{1} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{A}_{1}}\right)^{\mathrm{A}_{1}}$ regularize the singly-unresolved limits of $\mathrm{d} \sigma_{m+1}^{\mathrm{RV}}$ and $\int_{1} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{A}_{1}}$
- Each integral on the r.h.s. is finite in $d=4$ provided J is IR safe

Devising approximate cross sections

- Use known IR limits of squared matrix elements

$$
\begin{aligned}
\mathbf{C}_{i r}\left|\mathcal{M}_{m+1}^{(0)}\right|^{2} & \propto \frac{1}{s_{i r}} \hat{P}_{i r} \otimes\left|\mathcal{M}_{m}^{(0)}\right|^{2} \\
\mathbf{S}_{r}\left|\mathcal{M}_{m+1}^{(0)}\right|^{2} & \propto \sum_{i, k} \frac{s_{i k}}{s_{i r} s_{k r}}\left|\mathcal{M}_{m ;(i, k)}^{(0)}\right|^{2}
\end{aligned}
$$

- We face two difficulties
$\square \quad$ The various IR regions of the PS and thus the various IR limits overlap \Longrightarrow the overlaps must be disentangled: "matching of limits"
$\square \quad$ The IR factorization formulae are only defined in the strict limits \Longrightarrow give unambiguous meaning away from the limits: "extension"

Matching the singly-unresolved limits

- Only two types of limits
\square Collinear limit

$$
\mathbf{C}_{i r}\left|\mathcal{M}_{m+2}^{(0)}\right|^{2} \propto \frac{1}{s_{i r}} \hat{P}_{i r} \otimes\left|\mathcal{M}_{m+1}^{(0)}\right|^{2}
$$

\square Soft limit

$$
\mathbf{S}_{r}\left|\mathcal{M}_{m+2}^{(0)}\right|^{2} \propto \sum_{i \neq k} \mathcal{S}_{i k}(r)\left|\mathcal{M}_{m+1 ;(i, k)}^{(0)}\right|^{2}
$$

Matching the singly-unresolved limits

- Only two types of limits
\square Collinear limit
\square Soft limit

- The formal operator

$$
\mathbf{A}_{1}=\sum_{r}\left[\sum_{i \neq r} \frac{1}{2} \mathbf{C}_{i r}+\mathbf{S}_{r}-\sum_{i \neq r} \mathbf{C}_{i r} \mathbf{S}_{r}\right]
$$

counts each unresolved limit precisely once (it is free of double subtractions), so

$$
\mathbf{A}_{1}\left|\mathcal{M}_{m+2}^{(0)}\right|^{2}, \quad \mathbf{A}_{1} 2 \operatorname{Re}\left\langle\mathcal{M}_{m+1}^{(0)} \mid \mathcal{M}_{m+1}^{(1)}\right\rangle, \ldots
$$

has the same singly-unresolved singularity structure as

$$
\left|\mathcal{M}_{m+2}^{(0)}\right|^{2}, \quad 2 \operatorname{Re}\left\langle\mathcal{M}_{m+1}^{(0)} \mid \mathcal{M}_{m+1}^{(1)}\right\rangle, \ldots
$$

Matching the doubly-unresolved limits

- Four different types of limits
$\square \quad$ Triple collinear

$$
\mathbf{C}_{i r s}\left|\mathcal{M}_{m+2}^{(0)}\right|^{2} \propto \frac{1}{s_{i r s}^{2}} \hat{P}_{i r s} \otimes\left|\mathcal{M}_{m}^{(0)}\right|^{2}
$$

$\square \quad$ Doubly single collinear

$$
\mathbf{C}_{i r ; j s}\left|\mathcal{M}_{m+2}^{(0)}\right|^{2} \propto \frac{1}{s_{i r} s_{j s}} \hat{P}_{i r} \hat{P}_{j s} \otimes\left|\mathcal{M}_{m}^{(0)}\right|^{2}
$$

\square Doubly soft-collinear

$$
\mathbf{C S}_{i r ; s}\left|\mathcal{M}_{m+2}^{(0)}\right|^{2} \propto \frac{1}{s_{i r}} \mathcal{S}_{j l}(s) \hat{P}_{i r} \otimes\left|\mathcal{M}_{m ;(j, l)}^{(0)}\right|^{2}
$$Double soft

$$
\mathbf{S}_{r s}\left|\mathcal{M}_{m+2}^{(0)}\right|^{2} \propto \mathcal{S}_{i k}(r) \mathcal{S}_{j l}(s)\left|\mathcal{M}_{m ;(i, k)(j, l)}^{(0)}\right|^{2}-2 C_{\mathrm{A}} \mathcal{S}_{i k}(r, s)\left|\mathcal{M}_{m ;(i, k)}^{(0)}\right|^{2}
$$

Matching the doubly-unresolved limits

- Four different types of limits
$\square \quad$ Triple collinear
\square Doubly single collinear
\square Doubly soft-collinear
\square Double soft

■ The formal operator \mathbf{A}_{2} counts each unresolved limit precisely once...

$$
\begin{aligned}
\mathbf{A}_{3} & =\sum_{r} \sum_{s \neq r}\left\{\sum_{i \neq r, s}\left[\frac{1}{6} \mathbf{C}_{i r s}+\sum_{j \neq i, r, s} \frac{1}{8} \mathbf{C}_{i r ; j s}+\frac{1}{2} \mathbf{C S}_{i r ; s}\right]+\mathbf{S}_{r s}\right. \\
& -\sum_{i \neq r, s}\left[\frac{1}{2} \mathbf{C}_{i r s} \mathbf{C} \mathbf{S}_{i r ; s}+\sum_{j \neq i, r, s} \frac{1}{2} \mathbf{C}_{i r ; j s} \mathbf{C S}_{i r ; s}+\frac{1}{2} \mathbf{C}_{i r s} \mathbf{S}_{r s}+\mathbf{C} \mathbf{S}_{i r ; s} \mathbf{S}_{r s}\right. \\
& \left.\left.+\sum_{j \neq i, r, s} \frac{1}{2} \mathbf{C}_{i r ; j s} \mathbf{S}_{r s}\right]+\sum_{i \neq r, s}\left[\mathbf{C}_{i r s} \mathbf{C} \mathbf{S}_{i r ; s} \mathbf{S}_{r s}+\sum_{j \neq i, r, s} \mathbf{C}_{i r ; j s} \mathbf{C} \mathbf{S}_{i r ; s} \mathbf{S}_{r s}\right]\right\}
\end{aligned}
$$

Matching the doubly-unresolved limits

- Four different types of limits
$\square \quad$ Triple collinear
\square Doubly single collinear
\square Doubly soft-collinear
\square Double soft

■ The formal operator \mathbf{A}_{2} counts each unresolved limit precisely once...

$$
\begin{aligned}
\mathbf{A}_{2} & =\sum_{r} \sum_{s \neq r}\left\{\sum_{i \neq r, s}\left[\frac{1}{6} \mathbf{C}_{i r s}+\sum_{j \neq i, r, s} \frac{1}{8} \mathbf{C}_{i r ; j s}+\frac{1}{2} \mathbf{C S}_{i r ; s}\right]+\mathbf{S}_{r s}\right. \\
& -\sum_{i \neq r, s}\left[\frac{1}{2} \mathbf{C}_{i r s} \mathbf{C S}_{i r ; s}+\sum_{j \neq i, r, s} \frac{1}{2} \mathbf{C}_{i r ; j s} \mathbf{C S}_{i r ; s}+\frac{1}{2} \mathbf{C}_{i r s} \mathbf{S}_{r s}+\mathbf{C S}_{i r ; s} \mathbf{S}_{r s}\right. \\
& \left.\left.+\sum_{j \neq i, r, s} \frac{1}{2} \mathbf{C}_{i r ; j s} \mathbf{S}_{r s}\right]+\sum_{i \neq r, s}\left[\mathbf{C}_{i r s} \mathbf{C S}_{i r ; s} \mathbf{S}_{r s}+\sum_{j \neq i, r, s} \mathbf{C}_{i r ; j s} \mathbf{C S}_{i r ; s} \mathbf{S}_{r s}\right]\right\}
\end{aligned}
$$

Matching the doubly-unresolved limits

- Four different types of limits
$\square \quad$ Triple collinear
\square Doubly single collinear
\square Doubly soft-collinear
\square Double soft

■ The formal operator \mathbf{A}_{2} counts each unresolved limit precisely once...

$$
\begin{aligned}
\mathbf{A}_{2} & =\sum_{r} \sum_{s \neq r}\left\{\sum_{i \neq r, s}\left[\frac{1}{6} \mathbf{C}_{i r s}+\sum_{j \neq i, r, s} \frac{1}{8} \mathbf{C}_{i r ; j s}+\frac{1}{2} \mathbf{C S}_{i r ; s}\right]+\mathbf{S}_{r s}\right. \\
& -\sum_{i \neq r, s}\left[\frac{1}{2} \mathbf{C}_{i r s} \mathbf{C S}_{i r ; s}+\sum_{j \neq i, r, s} \frac{1}{2} \mathbf{C}_{i r ; j s} \mathbf{C S}_{i r ; s}+\frac{1}{2} \mathbf{C}_{i r s} \mathbf{S}_{r s}+\mathbf{C S}_{i r ; s} \mathbf{S}_{r s}\right. \\
& \left.\left.-\sum_{j \neq i, r, s} \frac{1}{2} \mathbf{C}_{i r ; j s} \mathbf{S}_{r s}-\mathbf{C}_{i r s} \mathbf{C S}_{i r ; s} \mathbf{S}_{r s}\right]\right\}
\end{aligned}
$$

Matching the doubly-unresolved limits

- Four different types of limits
$\square \quad$ Triple collinear
\square Doubly single collinear
\square Doubly soft-collinear
\square Double soft

■ The formal operator \mathbf{A}_{2} counts each unresolved limit precisely once...
■ ... and thus

$$
\mathbf{A}_{2}\left|\mathcal{M}_{m+2}^{(0)}\right|^{2}
$$

has the same doubly-unresolved singularity structure as

$$
\left|\mathcal{M}_{m+2}^{(0)}\right|^{2}
$$

Overlap of the singly- and doubly-unresolved limits

- The singly- and doubly-unresolved limits overlap
\Longrightarrow need $\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{A}_{12}}$ to avoid double subtraction
- The role of $\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{A}_{12}}$ is delicate
\square in doubly-unresolved limits
\Longrightarrow it needs to regularize $\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{A}_{1}}$
\square in singly-unresolved limits
\Longrightarrow it needs to regularize $\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{A}_{2}}$ and spurious singularities in $\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{A}_{1}}$
- We find that

$$
\left(\mathbf{A}_{1}+\mathbf{A}_{2}-\mathbf{A}_{1} \mathbf{A}_{2}\right)\left|\mathcal{M}_{m+2}^{(0)}\right|^{2}
$$

has the same singularity structure as

$$
\left|\mathcal{M}_{m+2}^{(0)}\right|^{2}
$$

in all singly- and doubly-unresolved limits and is free of multiple subtractions

Extending the candidate subtraction terms

- The action of the formal operators \mathbf{A}_{1} and \mathbf{A}_{2} defines candidate subtraction terms that are however only well defined in the strict IR limits
\Longrightarrow extend these candidate terms over the full PS
■ The extension requires the specification of

Single unresolved
Double unresolved
$\square \quad$ single momentum mapping

$$
\{p\}_{m+2} \longrightarrow\{\tilde{p}\}_{m+1}
$$

\square momentum conservation

$$
\sum_{i=1}^{m+2} p_{i}=\sum_{i=1}^{m+1} \tilde{p}_{i}
$$

\square PS factorization

$$
\mathrm{d} \phi_{m+2}=\mathrm{d} \phi_{m+1}\left[\mathrm{~d} p_{1}\right]
$$

\square double momentum mapping

$$
\{p\}_{m+2} \longrightarrow\{\tilde{p}\}_{m}
$$

\square momentum conservation

$$
\sum_{i=1}^{m+2} p_{i}=\sum_{i=1}^{m} \tilde{p}_{i}
$$

\square PS factorization

$$
\mathrm{d} \phi_{m+2}=\mathrm{d} \phi_{m}\left[\mathrm{~d} p_{2}\right]
$$

Momentum mappings (for final state radiation)

- Two types of single mappings (corresponding to two basic limits: collinear, soft)

Momentum mappings (for final state radiation)

- Two types of single mappings (corresponding to two basic limits: collinear, soft)
- Collinear mapping

$$
\tilde{p}_{i r}^{\mu}=\frac{1}{1-\alpha_{i r}}\left(p_{i}^{\mu}+p_{r}^{\mu}-\alpha_{i r} Q^{\mu}\right), \quad \tilde{p}_{n}^{\mu}=\frac{1}{1-\alpha_{i r}} p_{n}^{\mu}, \quad n \neq i, r
$$

$$
\alpha_{i r}=\frac{1}{2}\left[y_{(i r) Q}-\sqrt{y_{(i r) Q}^{2}-4 y_{i r}}\right]
$$

Momentum mappings (for final state radiation)

- Two types of single mappings (corresponding to two basic limits: collinear, soft)
- Soft mapping

$$
\begin{gathered}
\tilde{p}_{n}^{\mu}=\Lambda_{\nu}^{\mu}\left[Q,\left(Q-p_{r}\right) / \lambda_{r}\right]\left(p_{n}^{\nu} / \lambda_{r}\right), \quad n \neq r, \quad \lambda_{r}=\sqrt{1-y_{r} Q} \\
\Lambda_{\nu}^{\mu}[K, \widetilde{K}]=g_{\nu}^{\mu}-\frac{2(K+\widetilde{K})^{\mu}(K+\widetilde{K})_{\nu}}{(K+\widetilde{K})^{2}}+\frac{2 K^{\mu} \widetilde{K}_{\nu}}{K^{2}}
\end{gathered}
$$

Momentum mappings (for final state radiation)

- Four types of double mappings (corresponding to four basic limits)

Momentum mappings (for final state radiation)

- Four types of double mappings (corresponding to four basic limits)
- Triple collinear mapping

$$
\tilde{p}_{i r s}^{\mu}=\frac{1}{1-\alpha_{i r s}}\left(p_{i}^{\mu}+p_{r}^{\mu}+p_{s}^{\mu}-\alpha_{i r s} Q^{\mu}\right), \quad \tilde{p}_{n}^{\mu}=\frac{1}{1-\alpha_{i r s}} p_{n}^{\mu}, \quad n \neq i, r, s
$$

$$
\alpha_{i r s}=\frac{1}{2}\left[y_{(i r s) Q}-\sqrt{y_{(i r s) Q}^{2}-4 y_{i r s}}\right]
$$

Momentum mappings (for final state radiation)

- Four types of double mappings (corresponding to four basic limits)
- Doubly single collinear mapping

$$
\begin{gathered}
\tilde{p}_{i r}^{\mu}=\frac{p_{i}^{\mu}+p_{r}^{\mu}-\alpha_{i r} Q^{\mu}}{1-\alpha_{i r}-\alpha_{j s}}, \quad \tilde{p}_{j s}^{\mu}=\frac{p_{j}^{\mu}+p_{s}^{\mu}-\alpha_{j s} Q^{\mu}}{1-\alpha_{i r}-\alpha_{j s}} \\
\tilde{p}_{n}^{\mu}=\frac{1}{1-\alpha_{i r}-\alpha_{j s}} p_{n}^{\mu}, \quad \alpha_{k l}=\frac{1}{2}\left[y_{(k l) Q}-\sqrt{y_{(k l) Q}^{2}-4 y_{k l}}\right]
\end{gathered}
$$

Momentum mappings (for final state radiation)

- Four types of double mappings (corresponding to four basic limits)
- Double soft-collinear mapping

$$
\begin{gathered}
\tilde{p}_{n}^{\mu}=\Lambda_{\nu}^{\mu}\left[Q,\left(Q-\hat{p}_{s}\right) / \lambda_{\hat{s}}\right]\left(\hat{p}_{n}^{\nu} / \lambda_{\hat{s}}\right), \quad n \neq r, s, \quad \lambda_{\hat{s}}=\sqrt{1-y_{\hat{r}} Q} \\
\hat{p}_{i r}^{\mu}=\frac{1}{1-\alpha_{i r}}\left(p_{i}^{\mu}+p_{r}^{\mu}-\alpha_{i r} Q^{\mu}\right), \quad \hat{p}_{n}^{\mu}=\frac{1}{1-\alpha_{i r}} p_{n}^{\mu}
\end{gathered}
$$

Momentum mappings (for final state radiation)

- Four types of double mappings (corresponding to four basic limits)
- Double soft-collinear mapping

$$
\begin{gathered}
\tilde{p}_{n}^{\mu}=\Lambda_{\nu}^{\mu}\left[Q,\left(Q-\hat{p}_{s}\right) / \lambda_{\hat{s}}\right]\left(\hat{p}_{n}^{\nu} / \lambda_{\hat{s}}\right), \quad n \neq r, s, \quad \lambda_{\hat{s}}=\sqrt{1-y_{\hat{r}} Q} \\
\hat{p}_{i r}^{\mu}=\frac{1}{1-\alpha_{i r}}\left(p_{i}^{\mu}+p_{r}^{\mu}-\alpha_{i r} Q^{\mu}\right), \quad \hat{p}_{n}^{\mu}=\frac{1}{1-\alpha_{i r}} p_{n}^{\mu}
\end{gathered}
$$

Momentum mappings (for final state radiation)

- Four types of double mappings (corresponding to four basic limits)
- Double soft mapping

$$
\begin{gathered}
\tilde{p}_{n}^{\mu}=\Lambda_{\nu}^{\mu}\left[Q,\left(Q-p_{r}-p_{s}\right) / \lambda_{r s}\right]\left(p_{n}^{\nu} / \lambda_{r s}\right), \quad n \neq r, s \\
\lambda_{r s}=\sqrt{1-\left(y_{(r s)}-y_{r s}\right)}
\end{gathered}
$$

True subtraction terms

The momentum mappings define extensions of the limit formulae
\Longrightarrow these extensions define true subtraction terms

True subtraction terms

- The momentum mappings define extensions of the limit formulae
\Longrightarrow these extensions define true subtraction terms
- Doubly-real subtraction terms

$$
\mathrm{d} \sigma_{m+2}^{\mathrm{NNLO}}=\mathrm{d} \sigma_{m+2}^{\mathrm{RR}} J_{m+2}-\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{2}} J_{m}-\left(\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}} J_{m+1}-\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{12}} J_{m}\right)
$$

True subtraction terms

- The momentum mappings define extensions of the limit formulae
\Longrightarrow these extensions define true subtraction terms
- Doubly-real subtraction terms

$$
\mathrm{d} \sigma_{m+2}^{\mathrm{NNLO}}=\mathrm{d} \sigma_{m+2}^{\mathrm{RR}} J_{m+2}-\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{2}} J_{m}-\left(\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}} J_{m+1}-\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{12}} J_{m}\right)
$$

Limit
$\mathbf{A}_{1}\left|\mathcal{M}_{m+2}^{(0)}\right|^{2}$
Mapping
PS fact

$$
\mathrm{d} \phi_{m+2}=\mathrm{d} \phi_{m+1}\left[\mathrm{~d} p_{1}\right]
$$

$\mathcal{A}_{1}\left|\mathcal{M}_{m+2}^{(0)}\right|^{2}$

True subtraction terms

- The momentum mappings define extensions of the limit formulae
\Longrightarrow these extensions define true subtraction terms
- Doubly-real subtraction terms

$$
\mathrm{d} \sigma_{m+2}^{\mathrm{NNLO}}=\mathrm{d} \sigma_{m+2}^{\mathrm{RR}} J_{m+2}-\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{2}} J_{m}-\left(\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}} J_{m+1}-\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{12}} J_{m}\right)
$$

Limit
Mapping
PS fact

True subtraction terms

- The momentum mappings define extensions of the limit formulae
\Longrightarrow these extensions define true subtraction terms
- Doubly-real subtraction terms

$$
\mathrm{d} \sigma_{m+2}^{\mathrm{NNLO}}=\mathrm{d} \sigma_{m+2}^{\mathrm{RR}} J_{m+2}-\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{2}} J_{m}-\left(\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}} J_{m+1}-\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{12}} J_{m}\right)
$$

Limit
$\mathbf{A}_{2}\left|\mathcal{M}_{m+2}^{(0)}\right|^{2}$
$\{p\}_{m+2} \longrightarrow\{\tilde{p}\}_{m}$

$\mathcal{A}_{2}\left|\mathcal{M}_{m+2}^{(0)}\right|^{2}$

Mapping
PS fact

$$
\mathrm{d} \phi_{m+2}=\mathrm{d} \phi_{m}\left[\mathrm{~d} p_{2}\right]
$$

$$
\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{2}}=\mathrm{d} \phi_{m}\left[\mathrm{~d} p_{2}\right] \mathcal{A}_{2}\left|\mathcal{M}_{m+2}^{(0)}\right|^{2}
$$

True subtraction terms

- The momentum mappings define extensions of the limit formulae
\Longrightarrow these extensions define true subtraction terms
- Doubly-real subtraction terms

$$
\mathrm{d} \sigma_{m+2}^{\mathrm{NNLO}}=\mathrm{d} \sigma_{m+2}^{\mathrm{RR}} J_{m+2}-\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{2}} J_{m}-\left(\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}} J_{m+1}-\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{12}} J_{m}\right)
$$

Limit
Mapping
PS fact
$\mathbf{A}_{1} \mathbf{A}_{2}\left|\mathcal{M}_{m+2}^{(0)}\right|^{2} \quad\{p\}_{m+2} \rightarrow\{\hat{p}\}_{m+1} \rightarrow\{\tilde{p}\}_{m} \quad \mathrm{~d} \phi_{m+2}=\mathrm{d} \phi_{m}\left[\mathrm{~d} p_{1}\right]\left[\mathrm{d} p_{1}\right]$

True subtraction terms

- The momentum mappings define extensions of the limit formulae
\Longrightarrow these extensions define true subtraction terms
- Doubly-real subtraction terms

$$
\mathrm{d} \sigma_{m+2}^{\mathrm{NNLO}}=\mathrm{d} \sigma_{m+2}^{\mathrm{RR}} J_{m+2}-\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{2}} J_{m}-\left(\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}} J_{m+1}-\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{12}} J_{m}\right)
$$

- Real-virtual subtraction terms

$$
\mathrm{d} \sigma_{m+1}^{\mathrm{NNLO}}=\left(\mathrm{d} \sigma_{m+1}^{\mathrm{RV}}+\int_{1} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}}\right) J_{m+1}-\left[\mathrm{d} \sigma_{m+1}^{\mathrm{RV}, \mathrm{~A}_{1}}+\left(\int_{1} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}}\right)^{\mathrm{A}_{1}}\right] J_{m}
$$

True subtraction terms

- The momentum mappings define extensions of the limit formulae
\Longrightarrow these extensions define true subtraction terms
- Doubly-real subtraction terms

$$
\mathrm{d} \sigma_{m+2}^{\mathrm{NNLO}}=\mathrm{d} \sigma_{m+2}^{\mathrm{RR}} J_{m+2}-\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{2}} J_{m}-\left(\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}} J_{m+1}-\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{12}} J_{m}\right)
$$

- Real-virtual subtraction terms

$$
\mathrm{d} \sigma_{m+1}^{\mathrm{NNLO}}=\left(\mathrm{d} \sigma_{m+1}^{\mathrm{RV}}+\int_{1} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}}\right) J_{m+1}-\left[\mathrm{d} \sigma_{m+1}^{\mathrm{RV}, \mathrm{~A}_{1}}+\left(\int_{1} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}}\right) \mathrm{A}_{1}\right] J_{m}
$$

$\square \quad$ Integrating $\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{A}_{1}}$ over the factorized phase space $\Longrightarrow \int_{1} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{A}_{1}}$

True subtraction terms

- The momentum mappings define extensions of the limit formulae
\Longrightarrow these extensions define true subtraction terms
- Doubly-real subtraction terms

$$
\mathrm{d} \sigma_{m+2}^{\mathrm{NNLO}}=\mathrm{d} \sigma_{m+2}^{\mathrm{RR}} J_{m+2}-\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{2}} J_{m}-\left(\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}} J_{m+1}-\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{12}} J_{m}\right)
$$

- Real-virtual subtraction terms

$$
\mathrm{d} \sigma_{m+1}^{\mathrm{NNLO}}=\left(\mathrm{d} \sigma_{m+1}^{\mathrm{RV}}+\int_{1} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}}\right) J_{m+1}-\left[\mathrm{d} \sigma_{m+1}^{\mathrm{RV}, \mathrm{~A}_{1}}+\left(\int_{1} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}}\right)^{\mathrm{A}_{1}}\right] J_{m}
$$

\square Integrating d $\sigma_{m+2}^{\mathrm{RR}, \mathrm{A}_{1}}$ over the factorized phase space $\Longrightarrow \int_{1} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{A}_{1}}$
$\square \quad$ We use the same construction as in the RR case to define

$$
\begin{array}{lll}
2 \operatorname{Re}\left\langle\mathcal{M}_{m+1}^{(0)} \mid \mathcal{M}_{m+1}^{(1)}\right\rangle & \Longrightarrow \mathrm{d} \sigma_{m+1}^{\mathrm{RV}, \mathrm{~A}_{1}} \\
\int_{1} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}} & \Longrightarrow & \left(\int_{1} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{~A}_{1}}\right) \mathrm{A}_{1}
\end{array}
$$

Remarks

- All approximate cross sections explicitly defined for final state radiation (i.e. for $e^{+} e^{-} \rightarrow m$ jets for any m)
\square they are fully local: all colour and azimuthal correlations correctly accounted for
\square they have been checked for $e^{+} e^{-} \rightarrow 3$ jets: the regularized RR and RV pieces (i.e. $\mathrm{d} \sigma_{5}^{\mathrm{NNLO}}$ and $\mathrm{d} \sigma_{4}^{\mathrm{NNLO}}$) are finite

n	$\left\langle(1-t)^{n}\right\rangle_{\mathrm{RV}} / 10^{1}$	$\left\langle C^{n}\right\rangle_{\mathrm{RV}} / 10^{1}$	$\left\langle(1-t)^{n}\right\rangle_{\mathrm{RR}}$	$\left\langle C^{n}\right\rangle_{\mathrm{RR}}$
1	123 ± 1	433 ± 5	-92.7 ± 3.4	-344 ± 14
2	25.5 ± 0.2	325 ± 2	-3.07 ± 0.43	-142 ± 3
3	4.79 ± 0.03	180 ± 1	2.01 ± 0.12	6.29 ± 1.87

- No new concepts needed to include initial state radiation
$\square \quad$ cross the limit formulae (only collinear formulae change)
\square generalize the momentum mappings

Conclusions

- Set up a subtraction scheme for computing NNLO corrections to jet cross sections: the calculation is organised into 3 pieces: RR, RV and VV
- Approximate cross sections defined in a two step process
\square carefully match limits (as embodied in the formal operators \mathbf{A}_{1} and \mathbf{A}_{2})
\square extend formulae over full phase space (mom. mappings and PS fact.)
- Constructed all approximate cross sections for final state radiation explicitly
\square counterterms fully local
$\square \quad \mathrm{RR}$ and RV contributions are finite as required for $e^{+} e^{-} \rightarrow 3$ jets
- To do
\square Integrate $\mathrm{d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{A}_{2}}, \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{A}_{12}}, \mathrm{~d} \sigma_{m+1}^{\mathrm{RV}, \mathrm{A}_{1}}$ and $\left(\int_{1} \mathrm{~d} \sigma_{m+2}^{\mathrm{RR}, \mathrm{A}_{1}}\right)^{\mathrm{A}_{1}}$ analytically and combine with two-loop squared matrix element to get VV piece
\square Approximate cross sections for initial state radiation

