Working Group on Diffraction Theory Part

M. Diehl

Deutsches Elektronen-Synchroton DESY

16 March 2007

Topics (schematically)

- parton saturation and the dipole picture
 - G. Shaw, L. Motyka/H. Kowalski, A.v.Manteuffel
- exclusive Higgs production, input from HERA and Tevatron
 - K. Goulianos, M. Taševský, A. Pilkington, V. Khoze, M. Strikman,
 - U. Maor
- searching the odderon

C. Ewerz

Apologies to those whose work I will hardly/not review here

QCD at high parton densities

tool to describe/quantify in ep collisions: dipole picture

► describes inclusive DIS $(\gamma^* p \to X)$, diffractive DIS $(\gamma^* p \to Xp)$, exclusive channels $(\gamma^* p \to \text{meson } p, \gamma^* p \to \gamma p)$ with common non-perturbative input

QCD at high parton densities

tool to describe/quantify in ep collisions: dipole picture

- ► describes inclusive DIS $(\gamma^* p \to X)$, diffractive DIS $(\gamma^* p \to Xp)$, exclusive channels $(\gamma^* p \to \text{meson } p, \gamma^* p \to \gamma p)$ with common non-perturbative input
- key observation at HERA: same energy dependence of inclusive and diffractive DIS but not for exclusive channels

has natural explanation in saturation model

Inclusive hard diffraction

[K. Golec-Biernat and M. Wüsthoff]

Naively, in perturbative (or Regge) approach

$$\sigma_{\text{tot}}(W^2, Q^2) \sim \text{Im}\mathcal{T} \sim (W^2)^{\lambda}$$

$$\sigma_{\text{diff}}(W^2, Q^2) \sim |\mathcal{T}|^2 \sim (W^2)^{2\lambda}$$

At HERA $\lambda\simeq 0.25$ for large Q^2 but

 $\sigma_{\rm diff}/\sigma_{\rm tot}$ is flat!

The flat ratio $\sigma_{\rm diff}/\sigma_{\rm tot}$ is obtained only if the lower momentum cut-off scale grows as a power of W^2

Exclusive processes at HERA... page 6/24

L. Motyka/H. Kowalski

Diffraction: Theory

... but

- numerical study: can describe inclusive and diffractive DIS with our without saturation
 G. Shaw
- ► except if include DIS data for Q² ≤ 1 GeV² "uncomfortable region" for theory
- numerical accident? ~> precision and kinematical reach of data
- important: proper inclusion of impact parameter dependence proton more dense in center
 L. Motyka/H. Kowalski affects inclusive and diffractive DIS differently

Test dipole description

A.v.Manteuffel

$$F_T(x,Q^2) \propto \int d^2 r \,\sigma_{\mathsf{dip}}(r,x) \left|\psi_{\gamma_T^*}(r,Q^2)\right|^2$$
$$F_L(x,Q^2) \propto \int d^2 r \,\sigma_{\mathsf{dip}}(r,x) \left|\psi_{\gamma_L^*}(r,Q^2)\right|^2$$

 \rightsquigarrow bounds for ratio $R=F_L/F_T$

8

C. Ewerz, O. Nachtmann (2006)

Ratio $R = \sigma_L / \sigma_R$: upper bounds from dipole picture and data.

	A. v. Manteuffel (Universität Heidelberg)	Bounds from the Dipole Model	14 / 28
M. Diehl	Diffra	action: Theory	

plans to investigate saturation at LHC

huge step in kinematics from HERA

Monika Grothe, Prospects for diff and fwd physics at the LHC, HERA-LHC workshop March 2007

Diffraction: Theory

$p + p \rightarrow p + H + p$

can it be

- measured at LHC?
- calculated?

decay channel $H \rightarrow b\bar{b}$

SM cross section small $\sim 3fb$ for $M_H \approx 120 \text{GeV}$	
\rightsquigarrow very difficult: cuts, triggers, pileup	\rightarrow next talk
detailed higher-order background calculations	
$gg ightarrow bar{b},~gg ightarrow bar{b} + {\sf gluons}$	V. Khoze
enhanced in SUSY scenarios (ggH coupling)	
parameter scan	M. Taševský

Stat.sig=5 for $H \rightarrow bb$, mhmax sc., μ =-500 GeV

Diffraction: Theory

A. Pilkington

Higgs production is not everything

gluino production $p + p \rightarrow p + \tilde{g}\tilde{g} + p$

- ▶ if long-lived, gluinos ğ hadronize see two high-p_T "muon-like" particles
- precise mass measurement from outgoing protons and η of gluinos

The gluino mass can be obtained by just measuring the pseudo-rapidity of the outgoing R-hadrons.

After applying the trigger and forward detector acceptance, we find for high luminosity statistics (300fb⁻¹):

$m_{\tilde{g}} \ (\text{GeV})$	$\sigma_{m_{\tilde{g}}}$ (GeV)	$\frac{\sigma_{m_{\tilde{g}}}}{\sqrt{N-1}}$ (GeV)	N
200	2.31	0.19	145
250	2.97	0.50	35.0
300	3.50	1.10	10.2
320	3.61	1.54	6.5
350	3.87	2.45	3.5

It is possible to measure the gluino mass to approximately 1% using forward detectors up to m_{q̃} ~ 350GeV.

How reliable are the rate predictions?

 $\begin{array}{l} {\sf rescattering} \rightarrow \\ {\sf gap \ survival \ probability} \end{array}$

closely related to multiple interactions

- impact parameters selected by hard subprocess
 - \rightarrow rescattering rate
- \blacktriangleright transverse distribution of partons correlated with x
 - J/Ψ production (gluons), hope for more data on $\gamma^*p \to J/\Psi p$ and $\gamma^*p \to \gamma p$
 - lattice calculations (quarks at large x) important for gap survival prob.

- M. Strikman
- description of soft rescattering from *pp* data model dependence in extraction of parameters
 U. Maor

How reliable are the rate predictions?

 $\begin{array}{l} \mathsf{rescattering} \to \\ \mathsf{gap} \ \mathsf{survival} \ \mathsf{probability} \end{array}$

closely related to multiple interactions

- impact parameters selected by hard subprocess
 - \rightarrow rescattering rate
- \blacktriangleright transverse distribution of partons correlated with x
 - J/Ψ production (gluons), hope for more data on $\gamma^* p \to J/\Psi p$ and $\gamma^* p \to \gamma p$
 - lattice calculations (quarks at large x)

important for gap survival prob.

- description of soft rescattering from *pp* data model dependence in extraction of parameters
- b do we understand the dynamics at all?

M. Strikman

U. Maor

validate models using data from HERA and Tevatron

K. Goulianos, V. Khoze

JJ_{excl} : cross section predictions

ExHuME Hadron-Level Differential Exclusive Dijet Cross Section vs Dijet Mass (dotted/red): Default ExHuME prediction (points): Derived from CDF Run II Preliminary excl. dijet cross sections

non-exclusive background

- dangerous region: $\beta_{1,2} \rightarrow 1$
- input: diffractive PDFs from HERA
- ► backg'd estimate significantly lower with new (2006) H1 fits

P. Newman, M. Mozer

but caveats remain

large mom. fractions not constrained by inclusive diffract. DIS \rightsquigarrow dijets

Improved parton densities

Diffraction: Theory

side remark:

H1 analysis of diffractive structure function

► use standard NLO DGLAP formalism only data with $M_X > 2 \text{ GeV}$, $\beta < 0.8$ usual DIS: W x_B P. Newman

- ▶ finds problems when fitting data with $Q^2 < 8.5 \, {\rm GeV}^2$ not localized at particular β
 - NNLO effects? \rightsquigarrow can be included
 - higher twist ??
 - implications for DIS ???

Saturation 000000

Conclusions

Saturation

- to establish saturation at HERA remains hard
- ► no huge effects ~→ demand on precision and kinematic coverage of data many observables ~→ cross checks of theory framework
- prospects to study high-density regime in pp LHC

Exclusive diffraction at LHC

- may offer valuable information on physics > SM
- continuing efforts to calculate signal and background important part of physics connected with multiple interactions
- essential input from HERA and Tevatron data