

### 2nd workshop on the implications of HERA for LHC physics

# Summary of the WG2

# Hadronic final states and jet energy flow

# Part I: Theory

Conveners: C. Gwenlan (ZEUS), L. Lönnblad (Lund), E. Rodrigues (LHCb), G. Zanderighi(CERN) Contact persons: S. Banerjee (CMS), J. Butterworth (ATLAS)

- Underlying event and minimum bias
- Rapidity gaps and survival probabilities
- Multi-jet topologies and multi-scale QCD
- Parton shower/ME matching

- NLL BFKL, multi Regge kinematics
- prompt photons and kt-factorization
- theory accuracy on determination of pdfs
- Iogarithms and validation of Monte Carlos
- jets issues (infrared safety, speed, jet-areas...)
- higher orders, subtraction schemes, Higgs, combining QED&QCD see talk of Sven Moch

Augustin Sabio-Vera

### Mueller Navelet jets at hadron colliders



Leading jets widely separated in rapidity. Allow radiation in between.  $\Rightarrow$  BFKL regime large logs  $\ln(s/|t|) \sim Y$ 

No radiation: jets back-to-back

Interested in azimuthal (de)correlation between jets.

Augustin Sabio-Vera

$$\frac{d\hat{\sigma}\left(\alpha_{s}, \mathbf{Y}, p_{1,2}^{2}\right)}{d\phi} = \frac{\pi^{2}\bar{\alpha}_{s}^{2}}{4\sqrt{p_{1}^{2}p_{2}^{2}}} \sum_{n=-\infty}^{\infty} e^{in\phi} \mathcal{C}_{n}\left(\mathbf{Y}\right)$$
Fourier expansion

$$\mathcal{C}_{n}(\mathbf{Y}) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{d\nu}{\left(\frac{1}{4} + \nu^{2}\right)} \left(\frac{p_{1}^{2}}{p_{2}^{2}}\right)^{i\nu} e^{\chi\left(|n|,\frac{1}{2} + i\nu,\bar{\alpha}_{s}(p_{1}p_{2})\right)\mathbf{Y}} \qquad \text{Fourier coefficients}$$

$$\chi(n,\gamma,\bar{\alpha}_s) \equiv \bar{\alpha}_s \chi_0(n,\gamma) + \bar{\alpha}_s^2 \left( \chi_1(n,\gamma) - \frac{\beta_0}{8N_c} \frac{\chi_0(n,\gamma)}{\gamma(1-\gamma)} \right)$$
 NLO kernel

$$\hat{\sigma} \left( \alpha_s, \mathbf{Y}, p_{1,2}^2 \right) = \frac{\pi^3 \bar{\alpha}_s^2}{2\sqrt{p_1^2 p_2^2}} \mathcal{C}_0 \left( \mathbf{Y} \right)$$
Integrated  $\hat{\sigma}$  - only  $\mathcal{C}_0$  survives
$$\langle \cos \left( m\phi \right) \rangle = \frac{\mathcal{C}_m \left( \mathbf{Y} \right)}{\mathcal{C}_0 \left( \mathbf{Y} \right)}$$
Moments - extract various  $\mathcal{C}_m$ 



Augustin Sabio-Vera







Hope at LHC because of larger accessible rapidity distance ⇒ closer to asymptotic region



Hope at LHC because of larger accessible rapidity distance ⇒ closer to asymptotic region

<u>Comments</u>: Herwig agrees with data. Maybe BFKL does not catch the relevant physics and a threshold resummation would do the job? Conversely, if one wants to find BFKL effects maybe this is not the right observable?

Christophe Royon

Forward jets at Hera in BFKL domain:  $k_t^2 \sim Q^2$  with  $Q^2$  not too large

Christophe Royon

Forward jets at Hera in BFKL domain:  $k_t^2 \sim Q^2$  with  $Q^2$  not too large

#### **BFKL LO formalism**

• BFKL LO forward jet cross section, saddle point approximation:

$$\frac{d\sigma}{dxdk_T dQ^2 dx_{jet}} = N \sqrt{\frac{Q^2}{k_T^2}} \alpha_S(k_T^2) \alpha_S(Q^2) \sqrt{A}$$
$$\exp\left(4\alpha(\log 2) \frac{N_C}{\pi} \log(\frac{x_J}{x})\right)$$
$$\exp\left(-A \log^2(\sqrt{\frac{Q}{k_T}})\right)$$

• 2 parameters in fits to  $d\sigma/dx$ : N,  $\alpha$ 

Christophe Royon

Forward jets at Hera in BFKL domain:  $k_t^2 \sim Q^2$  with  $Q^2$  not too large

#### **BFKL LO formalism**

• BFKL LO forward jet cross section, saddle point approximation:

$$\frac{d\sigma}{dxdk_T dQ^2 dx_{jet}} = N \sqrt{\frac{Q^2}{k_T^2}} \alpha_S(k_T^2) \alpha_S(Q^2) \sqrt{A}$$
$$\exp\left(4\alpha(\log 2)\frac{N_C}{\pi}\log(\frac{x_J}{x})\right)$$
$$\exp\left(-A\log^2(\sqrt{\frac{Q}{k_T}})\right)$$

• 2 parameters in fits to  $d\sigma/dx$ : N,  $\alpha$ 

#### How to go to BFKL-NLL formalism?

• Simple idea: Keep the saddle point approximation, and use the BFKL NLO kernel

$$\frac{d\sigma}{dx} = N \left(\frac{Q^2}{k_T^2}\right)^{power} \alpha_S(k_T^2) \alpha_S(Q^2) \sqrt{A}$$
$$\exp\left(\alpha_S(k_TQ)\frac{N_C}{\pi}\chi(\gamma_C)\log(\frac{x_J}{x})\right)$$
$$\exp\left(-A\alpha_S(k_TQ)\log^2(\sqrt{\frac{Q}{k_T}})\right)$$

• Only free parameter in the BFKL NLL fit: absolute normalisation



Source Schristophe Royon

 $d\sigma/dx$  data small sensitivity NLL BFKL  $\Rightarrow$  study triple differential distribution

d  $\sigma/dx dk_T^2 d Q^2$  - H1 DATA

Summary of WG2: Hadronic final states and energy flow (Part I) 7/30

- DGLAP NLO fails to describe forward jet data
- First BFKL NLL description of H1 and ZEUS forward jet data: very good description
- BFKL NLL gives a good description of data over the full range: first success of BFKL higher order corrections, shows the need of these corrections
- Same kind of processes at the Tevatron and the LHC: Mueller Navelet jets
- Study the ∆Φ between jets dependence of the cross section: Following A. Sabio Vera, F. Schwennsen hep-ph/0702158

Christophe Royon

- DGLAP NLO fails to describe forward jet data
- First BFKL NLL description of H1 and ZEUS forward jet data: very good description
- BFKL NLL gives a good description of data over the full range: first success of BFKL higher order corrections, shows the need of these corrections
- Same kind of processes at the Tevatron and the LHC: Mueller Navelet jets
- Study the △Φ between jets dependence of the cross section: Following A. Sabio Vera, F. Schwennsen hep-ph/0702158

Controversial point: audience claimed that the saddle point approximation is not warranted

Christophe Royon

Inclusive single-jet production @ NLO with BKFL Florian S

Florian Schwensen



BFKL eq. for Green functions  $\omega f_{\omega}(\mathbf{k}_{a}, \mathbf{k}_{b}) = \delta^{(2)}(\mathbf{k}_{a} - \mathbf{k}_{b}) + \int d^{2}\mathbf{k} \, \mathcal{K}(\mathbf{k}_{a}, \mathbf{k}) f_{\omega}(\mathbf{k}, \mathbf{k}_{b})$ 

### Changes at NLO:

Q: Can we just replace the LO expressions for impact factors, kernel and Green's function by their NLO counterparts?

Florian Schwensen

A: NO!

### Changes at NLO:

Q: Can we just replace the LO expressions for impact factors, kernel and Green's function by their NLO counterparts?

Florian Schwensen

A: NO!

) at NLO 
$$~~{\cal K}_{
m real} \sim ~~{igar} + \int ~{igar}$$

• for  $\mid$  two possibilities:

- both together form a jet
- one forms the jet, other one unresolved

### Changes at NLO:

Q: Can we just replace the LO expressions for impact factors, kernel and Green's function by their NLO counterparts?

Florian Schwensen

A: NO!

• at NLO 
$$~~{\cal K}_{
m real} \sim ~~ 
ightarrow ~~ + \int ~~ 
ightarrow$$

• for 
$$\mid$$
 two possibilities:

- both together form a jet
- one forms the jet, other one unresolved
- define distance in rapidity-azimuthal angle space  $R_{12} = \sqrt{(y_1 - y_2)^2 + (\phi_1 - \phi_2)^2}$ •  $\theta(R_0 - R_{12})$  :  $\left| \leqslant \right|$ •  $\theta(R_{12} - R_0)$  :  $\left| \leqslant^{\times} \right|$
- open integration to extract jet

$$\mathcal{V} \sim \left| \mathbf{v} \right| + \int \left| \mathbf{v} \right|^{\times} + \int \left| \mathbf{v} \right|^{\times}$$

Florian Schwensen

• real and virtual parts with different  $x_{1,2}$  configurations  $\rightsquigarrow$  different  $g(x_1, q_a)g(x_2, q_b) \rightsquigarrow$  cancellation of divergences?

 $\mathcal{V} = \left( \begin{array}{|c|c|} & + \\ & - \\ & \\ \end{array} \right) + \int \left( \begin{array}{|c|} & \\ & \\ & \\ \end{array} \right) + \int \left( \begin{array}{|c|} & \\ & \\ & \\ & \\ \end{array} \right) + \int \left( \begin{array}{|c|} & \\ & \\ & \\ & \\ & \\ \end{array} \right)$ 

### Florian Schwensen

• real and virtual parts with different  $x_{1,2}$  configurations  $\rightsquigarrow$ different  $g(x_1, q_a)g(x_2, q_b) \rightsquigarrow$  cancellation of divergences?

 $\mathcal{V} = \left( \begin{array}{|c|c|} & + \\ & - \\ & \\ \end{array} \right) + \int \left( \begin{array}{|c|} & \\ & \\ & \\ \end{array} \right) + \int \left( \begin{array}{|c|} & \\ & \\ & \\ & \\ \end{array} \right) + \int \left( \begin{array}{|c|} & \\ & \\ & \\ & \\ & \\ \end{array} \right)$ 

extended NLO BFKL to obtain the NLO jet vertex in kt-factorization

- procedure allows one to use a jet algorithm in the BFKL kernel
- method can be used for NLO jet-vertex in  $\gamma^* \gamma^*$  and hh inclusive single jet production

This analysis: a contribution to the more general question of how to formulate kt factorization at NLO





| NLO pQCD | 30-40% below the HERA data (specially in the rear $\eta^{\gamma}$ region)                               |
|----------|---------------------------------------------------------------------------------------------------------|
| US       | not describe the shape of transverse energy $E_T^{\gamma}$ distribution at Tevatron                     |
|          | not describe the ratio of cross sections $\sigma(630 \text{ GeV})/\sigma(1800 \text{ GeV})$ at Tevatron |
|          |                                                                                                         |

Stat

Summary of WG2: Hadronic final states and energy flow (Part I) 12/30

### $k_{T}$ - smearing?

additional intrinsic transverse momentum k<sub>T</sub> of the incoming partons is introduced in NLO calculations

□ it is assumed that this  $k_T$  have a Gaussian-like distribution

 $\Box$   $\langle k_T \rangle \sim 0.5 \,\text{GeV}$  at UA6 and  $\langle k_T \rangle \sim 2 \,\text{GeV}$  at Tevatron

### Nikolai Zotov

### $k_{T}$ - smearing?

additional intrinsic transverse momentum k<sub>T</sub> of the incoming partons is introduced in NLO calculations

□ it is assumed that this  $k_T$  have a Gaussian-like distribution

 $(k_T) \sim 0.5 \,\text{GeV}$  at UA6 and  $\langle k_T \rangle \sim 2 \,\text{GeV}$  at Tevatron

### Another possibility

Simple  $k_T$ -smearing picture can be modified in the framework of  $k_T$ -factorization (or semihard) approach of QCD

In this approach, the partonic transverse momentum is generated in the course of the non-collinear parton evolution

- based on the BFKL or CCFM evolution equations
- $\Box$  can incorporate the leading  $\ln 1/x$  terms



### Nikolai Zotov

Nikolai Zotov



*k<sub>T</sub>*-factorization approach of QCD gives a reasonable description of the recent HERA and Tevatron data

Realistic predictions at LHC

Hope to include in the pdf fits prompt photons at the LHC because of higher statistics

# Power corrections from an s-channel approach

Francesco Hautmann

Motivation:

Proton structure at small x:

• investigated extensively at HERA

• valuable input in LHC physics program

Gluon distribution at  $x \lesssim 10^{-2}$  determined from DIS data at high energies and moderate  $Q^2$ 

▷ power corrections from multi-parton correlations potentially significant?

- $F_2 \sim \Sigma$  (flavor-singlet quark)
- $\dot{F}_2$  driven by gluon

 $\Rightarrow \dot{F}_2 \sim \dot{\Sigma} \sim P_{qg} \otimes G \left[1 + \mathcal{O}(1/Q^2)\right] + \text{ quark term}$ 

Р

### Power corrections from an s-channel approach

Francesco Hautmann

parton picture

- systematic factorization of pdf's and hard scattering at large  $Q^2$
- calculability of higher order perturbative corrections

#### s-channel picture

- no systematic factorization; contributions to all orders in  $1/Q^2$
- basic degrees of freedom are described by matrix elements

of Wilson lines ("color dipoles" at simplest level)

— possibility to incorporate nonperturbative small-x dynamics ("saturation")

Aim: connect the two pictures with enough precision so as to identify the power correction to  $dF_2/d\ln Q^2$ 

Basic idea: expand F in powers of  $1/Q^2$ 

- identify factorized partonic result using previous answer for renormalized  $f_q$
- $\bullet$  determine the power correction from the remainder

### Power corrections from an s-channel approach



Francesco Hautmann

$$\frac{dF_T}{d\ln Q^2} = \left(\frac{dF_T}{d\ln Q^2}\right)_{\rm LP} + \sum_{n=1}^{\infty} R_n \frac{\lambda_n^2}{(Q^2)^n}$$

Expand in powers of  $1/Q^2$ , at low  $Q^2$ and x. Identity the power correction by subtracting the leading-power.

 $\frac{1}{10}$   $\Rightarrow$  power expansion does not look to be breaking down

but: slow fall-off for medium  $Q^2$  (e.g.,  $1/Q^{\lambda}$ ,  $\lambda = 1.2$ , in [1, 10] GeV<sup>2</sup> for  $x \simeq 10^{-3}$ )

 Rather extensive approximations used (high-energy, dipole approximation); modeling of nonperturbative matrix element; summation of power expansion: can we do better?

Question: what happens for  $F_L$ ? are there cancellations in  $F_2$  from  $F_T$  and  $F_L$ ?

Gennaro Corcella

Non-global observables are sensitive to radiation in a limited region of the phase space

Gennaro Corcella

Non-global observables are sensitive to radiation in a limited region of the phase space

Multiple radiation from a  $q\bar{q}$  dipole in a region  $\Omega$ 





Contributions  $\alpha_S^2 L^2$ : non-global logarithm

Gennaro Corcella

Non-global observables are sensitive to radiation in a limited region of the phase space

Multiple radiation from a  $q\bar{q}$  dipole in a region  $\Omega$ 





Contributions  $\alpha_S^2 L^2$ : non-global logarithm

$$E_t = \sum_{i \in \Omega} E_{ti} \qquad \qquad \Sigma(Q, Q_{\Omega}) = \frac{1}{\sigma} \int_0^{Q_{\Omega}} \frac{d\sigma}{dE_t} dE_t = \exp(-4C_F A_{\Omega} t) S(t)$$

 $\exp(-4C_F A_\Omega t)$ : exponentiation of primary radiation (angular ordering)  $S(t) = \sum_{n=2} S_n t^n$ : non-global logarithms, due to correlated gluon emissions





Monte Carlo event generators are often tuned to non-global observables



Monte Carlo event generators are often tuned to non-global observables

Angular ordering catches a relevant part of non-global logarithms



Monte Carlo event generators are often tuned to non-global observables

Angular ordering catches a relevant part of non-global logarithms

**HERWIG** :  $Q^2 = E^2(1 - \cos \theta) \simeq E^2 \theta^2/2$  Soft limit: angular ordering

**PYTHIA (up to 6.2 version):**  $Q^2 = p^2$ 

It includes angular ordering via an additional veto

**PYTHIA 6.3:**  $Q^2 = k_T^2$  (better treatment of angular ordering)

#### **Comparing resummation and parton showers**

Gennaro Corcella

 $Q = 10^5$  GeV to neglect subleading effects  $\mathcal{O}(\alpha_S(Q))$  and quark masses



Difference with respect to the full resummed result for  $E_t = 10$  GeV: - 10% (HERWIG); + 7.5% (PYTHIA new); - 50% (PYTHIA old)



### Gennaro Corcella

⇒ remarkable discrepancy between new PYTHIA model and resummation at large rapidity slices.
Further investigation needed.



### Gennaro Corcella

⇒ remarkable discrepancy
 between new PYTHIA model
 and resummation at large
 rapidity slices.
 Further investigation needed.

Need care when fitting event generators to non-global observables! In MC tuning may incorporate in the underlying event or in NP parameters effects which are calculable in PT.

Do we have the necessary tools/measurements for best tuned MCs? Need to clarify the above discrepancies!

Gregory Soyez

Usual seeded method to search stable cones: midpoint cone algorithm

- For an initial seed
  - 1. sum the momenta of all particles within the cone centred on the seed
  - 2. use the direction of that momentum as new seed
  - 3. repeat 1 & 2 until stable state cone reached

#### Sets of seeds:

- 1. All particles (above a  $p_t$  threshold s)
- 2. Midpoints between stable cones found in 1.

Gregory Soyez

Usual seeded method to search stable cones: midpoint cone algorithm

- For an initial seed
  - 1. sum the momenta of all particles within the cone centred on the seed
  - 2. use the direction of that momentum as new seed
  - 3. repeat 1 & 2 until stable state cone reached

### Sets of seeds:

- 1. All particles (above a  $p_t$  threshold s)
- 2. Midpoints between stable cones found in 1.

### Problems:

- the  $p_t$  threshold s is collinear unsafe
- seeded approach  $\Rightarrow$  stable cones missed  $\Rightarrow$  infrared unsafety

Gregory Soyez



#### ightarrow IR unsafety of the midpoint algorithm

Gregory Soyez

SISCone finds provably all stable cones, without introducing seeds

Gregory Soyez

SISCone finds provably all stable cones, without introducing seeds

### Test of IR-safety



Fraction of hard events failing IR safety test

With currently used cones important fraction of events fails IR-safety test.

Gregory Soyez

### SISCone finds provably all stable cones, without introducing seeds

### Test of IR-safety



Fraction of hard events failing IR safety test

With currently used cones important fraction of events fails IR-safety test.

### Speed issue



NB: speed IS an issue! With a naive implementation of seedless cone need  $10^{17}$  years to cluster 100 particles!



Gregory Soyez



### Jet areas and what they are good for

The 'active area' of a jet is (proportional to) the number of uniformly distributed infinitely soft particles that get clustered in it

After the clustering, a given set of ghosts belong to each jet

Their number (times the average area of a single ghost) defines the **catchment area** of the jet



rapidity-azimuth plane φ

NB: without fastjet this work would not be feasible

Summary of WG2: Hadronic final states and energy flow (Part I) 26/30

### Jet areas and what they are good for

**Applications:** 

### Matteo Cacciari



### $p_T$ /Area is fairly constant, except for the hard jets

### Jet areas and what they are good for

Matteo Cacciari



They can be used to subtract the background contribution from the hard jets

### Jets: cone versus kt

We heard many rumours about the kt-algorithm being not well behaved in some contexts

Now that we have

 $\checkmark$  an efficient kt-algorithm

 $\checkmark$  an efficient, infrared-safe Cone algorithm



✓ methods to estimate noise/background/sensitivity to UE

We hope to see soon a systematic comparison between the two types of algos (e.g. sensitivity to underlying event, hadronization effects, etc.)

# Part II: experimental summary by Claire Gwenlan