HERA LHC workshop

2nd workshop on the implications of HERA for LHC physics

Summary of the WG2

Hadronic final states and jet energy flow

Part I:Theory

Conveners: C. Gwenlan (ZEUS), L. Lönnblad (Lund), E. Rodrigues (LHCb), G. Zanderighi(CERN) Contact persons: S. Banerjee (CMS), J. Butterworth (ATLAS)

- Underlying event and minimum bias
- Rapidity gaps and survival probabilities
- Multi-jet topologies and multi-scale QCD
- Parton shower/ME matching

Topics addressed here

© NLL BFKL, multi Regge kinematics
\& prompt photons and kt-factorization
\& theory accuracy on determination of pdfs
\notin logarithms and validation of Monte Carlos
\notin jets issues (infrared safety, speed, jet-areas...)
\notin higher orders, subtraction schemes, Higgs, combining QED\&QCD
\Rightarrow see talk of Sven Moch

Azimuthal angles in multi-Regge kinematics

Augustin Sabio-Vera
Mueller Navelet jets at hadron colliders

Leading jets widely separated in rapidity. Allow radiation in between.
$\Rightarrow B F K L$ regime large logs

$$
\ln (s /|t|) \sim Y
$$

No radiation: jets back-to-back
Interested in azimuthal (de)correlation between jets.

Azimuthal angles in multi-Regge kinematics

Augustin Sabio-Vera

$$
\begin{array}{lr}
\frac{d \hat{\sigma}\left(\alpha_{s}, \mathrm{Y}, p_{1,2}^{2}\right)}{d \phi}=\frac{\pi^{2} \bar{\alpha}_{s}^{2}}{4 \sqrt{p_{1}^{2} p_{2}^{2}}} \sum_{n=-\infty}^{\infty} e^{i n \phi} \mathcal{C}_{n}(\mathrm{Y}) & \text { Fourier expansion } \\
\mathcal{C}_{n}(\mathrm{Y})=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \frac{d \nu}{\left(\frac{1}{4}+\nu^{2}\right)}\left(\frac{p_{1}^{2}}{p_{2}^{2}}\right)^{i \nu} e^{\chi\left(|n| \frac{1}{2}+i \nu, \bar{\alpha}_{s}\left(p_{1} p_{2}\right)\right) \mathrm{Y}} & \text { Fourier coefficients } \\
\chi\left(n, \gamma, \bar{\alpha}_{s}\right) \equiv \bar{\alpha}_{s} \chi_{0}(n, \gamma)+\bar{\alpha}_{s}^{2}\left(\chi_{1}(n, \gamma)-\frac{\beta_{0}}{8 N_{c}} \frac{\chi_{0}(n, \gamma)}{\gamma(1-\gamma)}\right) & \text { NLO kernel } \\
\hat{\sigma}\left(\alpha_{s}, \mathrm{Y}, p_{1,2}^{2}\right)=\frac{\pi^{3} \bar{\alpha}_{s}^{2}}{2 \sqrt{p_{1}^{2} p_{2}^{2}}} \mathcal{C}_{0}(\mathrm{Y}) & \text { Integrated } \hat{\sigma} \text { - only } \mathcal{C}_{0} \text { survives } \\
\langle\cos (m \phi)\rangle=\frac{\mathcal{C}_{m}(\mathrm{Y})}{\mathcal{C}_{0}(\mathrm{Y})} & \text { Moments - extract various } \mathcal{C}_{m}
\end{array}
$$

Azimuthal angles in multi-Regge kinematics

Augustin Sabio-Vera

Azimuthal angles in multi-Regge kinematics

Azimuthal angles in multi-Regge kinematics

Azimuthal angles in multi-Regge kinematics

Hope at LHC because of larger accessible rapidity distance
\Rightarrow closer to asymptotic region

Azimuthal angles in multi-Regge kinematics

Hope at LHC because of larger accessible rapidity distance \Rightarrow closer to asymptotic region

Comments: Herwig agrees with data. Maybe BFKL does not catch the relevant physics and a threshold resummation would do the job?
Conversely, if one wants to find BFKL effects maybe this is not the right observable?

NLL BFKL for forward and Mueller Navalet jets

Christophe Royon

Forward jets at Hera in BFKL domain: $k_{t}^{2} \sim Q^{2}$ with Q^{2} not too large

NLL BFKL for forward and Mueller Navalet jets

Christophe Royon
Forward jets at Hera in BFKL domain: $k_{t}^{2} \sim Q^{2}$ with Q^{2} not too large

BFKL LO formalism

- BFKL LO forward jet cross section, saddle point approximation:

$$
\begin{aligned}
\frac{d \sigma}{d x d k_{T} d Q^{2} d x_{j e t}}= & N \sqrt{\frac{Q^{2}}{k_{T}^{2}}} \alpha_{S}\left(k_{T}^{2}\right) \alpha_{S}\left(Q^{2}\right) \sqrt{A} \\
& \exp \left(4 \alpha(\log 2) \frac{N_{C}}{\pi} \log \left(\frac{x_{J}}{x}\right)\right) \\
& \exp \left(-A \log ^{2}\left(\sqrt{\frac{Q}{k_{T}}}\right)\right)
\end{aligned}
$$

- 2 parameters in fits to $d \sigma / d x: N, \alpha$

NLL BFKL for forward and Mueller Navalet jets

Christophe Royon

Forward jets at Hera in BFKL domain: $k_{t}^{2} \sim Q^{2}$ with Q^{2} not too large

BFKL LO formalism

- BFKL LO forward jet cross section, saddle point approximation:

$$
\begin{aligned}
\frac{d \sigma}{d x d k_{T} d Q^{2} d x_{j e t}}= & N \sqrt{\frac{Q^{2}}{k_{T}^{2}}} \alpha_{S}\left(k_{T}^{2}\right) \alpha_{S}\left(Q^{2}\right) \sqrt{A} \\
& \exp \left(4 \alpha(\log 2) \frac{N_{C}}{\pi} \log \left(\frac{x_{J}}{x}\right)\right) \\
& \exp \left(-A \log ^{2}\left(\sqrt{\frac{Q}{k_{T}}}\right)\right)
\end{aligned}
$$

- 2 parameters in fits to $d \sigma / d x: N, \alpha$

How to go to BFKL-NLL formalism?

- Simple idea: Keep the saddle point approximation, and use the BFKL NLO kernel

$$
\begin{aligned}
\frac{d \sigma}{d x}= & N\left(\frac{Q^{2}}{k_{T}^{2}}\right)^{\text {power }} \alpha_{S}\left(k_{T}^{2}\right) \alpha_{S}\left(Q^{2}\right) \sqrt{A} \\
& \exp \left(\alpha_{S}\left(k_{T} Q\right) \frac{N_{C}}{\pi} \chi\left(\gamma_{C}\right) \log \left(\frac{x_{J}}{x}\right)\right) \\
& \exp \left(-A \alpha_{S}\left(k_{T} Q\right) \log ^{2}\left(\sqrt{\frac{Q}{k_{T}}}\right)\right)
\end{aligned}
$$

- Only free parameter in the BFKL NLL fit: absolute normalisation

NLL BFKL for forward and Mueller Navalet jets

$d \sigma / d x$ data small sensitivity NLL BFKL \Rightarrow study triple differential distribution
$\mathrm{d} \sigma / \mathrm{dx}_{\mathrm{dk}}^{\mathrm{T}} \mathbf{2}^{\mathbf{d}} \mathrm{Q}^{\mathbf{2}} \mathbf{- H 1}$ DATA

NLL BFKL for forward and Mueller Navalet jets

- DGLAP NLO fails to describe forward jet data

Christophe Royon

- First BFKL NLL description of H1 and ZEUS forward jet data: very good description
- BFKL NLL gives a good description of data over the full range: first success of BFKL higher order corrections, shows the need of these corrections
- Same kind of processes at the Tevatron and the LHC: Mueller Navelet jets
- Study the $\Delta \Phi$ between jets dependence of the cross section: Following A. Sabio Vera, F. Schwennsen hep-ph/0702158

NLL BFKL for forward and Mueller Navalet jets

- DGLAP NLO fails to describe forward jet data

Christophe Royon

- First BFKL NLL description of H1 and ZEUS forward jet data: very good description
- BFKL NLL gives a good description of data over the full range: first success of BFKL higher order corrections, shows the need of these corrections
- Same kind of processes at the Tevatron and the LHC:

Mueller Navelet jets

- Study the $\Delta \Phi$ between jets dependence of the cross section: Following A. Sabio Vera, F. Schwennsen hep-ph/0702158

Controversial point: audience claimed that the saddle point approximation is not warranted

Central jet-vertex in kt-factoriztion at NLO

Inclusive single-jet production @ NLO with BKFL

Florian Schwensen

$$
\begin{aligned}
& \frac { d \sigma } { d ^ { 2 } \mathbf { k } _ { \text { Jet } } d y _ { \text { Jet } } } = \int \frac { d ^ { 2 } \mathbf { k } _ { a } } { 2 \pi \mathbf { k } _ { a } ^ { 2 } } \int \frac { d ^ { 2 } \mathbf { k } _ { b } } { 2 \pi \mathbf { k } _ { b } ^ { 2 } } \Phi _ { A } (\mathbf { k } _ { a }) \longdiv { \Phi _ { B } (\mathbf { k } _ { b }) \longleftarrow } \text { factors } \\
& \times \int d^{2} \mathbf{q}_{a} \int d^{2} \mathbf{q}_{b} \int \frac{d \omega}{2 \pi i}\left(\frac{s_{A J}}{s_{0}}\right)^{\omega} f_{\omega}\left(\mathbf{k}_{a}, \mathbf{q}_{a}\right) \\
& \times \mathcal{V}\left(\mathbf{q}_{a}, \mathbf{q}_{b} ; \mathbf{k}_{J e t}, y_{J e t}\right) \\
& \times \int \frac{d \omega^{\prime}}{2 \pi i}\left(\frac{s_{B J}}{s_{0}^{\prime}}\right)^{\omega^{\prime}} f_{\omega^{\prime}}\left(-\mathbf{q}_{b},-\mathbf{k}_{b}\right) \\
& \text { BFKL eq. for Green functions } \\
& \omega f_{\omega}\left(\mathbf{k}_{a}, \mathbf{k}_{b}\right)=\delta^{(2)}\left(\mathbf{k}_{a}-\mathbf{k}_{b}\right) \\
& +\int d^{2} \mathbf{k} \mathcal{K}\left(\mathbf{k}_{a}, \mathbf{k}\right) f_{\omega}\left(\mathbf{k}, \mathbf{k}_{b}\right)
\end{aligned}
$$

Central jet-vertex in kt-factoriztion at NLO

Changes at NLO:

Q: Can we just replace the LO expressions for impact factors, kernel and Green's function by their NLO counterparts?

Florian Schwensen
A: NO!

Central jet-vertex in kt-factoriztion at NLO

Changes at NLO:

Florian Schwensen

Q: Can we just replace the LO expressions for impact factors, kernel and Green's function by their NLO counterparts?

A: NO!

- at NLO $\quad \mathcal{K}_{\text {real }} \sim \nmid+\int K$
- for K two possibilities:
- both together form a jet
- one forms the jet, other one unresolved

Central jet-vertex in kt-factoriztion at NLO

Changes at NLO:

Florian Schwensen

Q: Can we just replace the LO expressions for impact factors, kernel and Green's function by their NLO counterparts?

A: NO!

- at NLO $\quad \mathcal{K}_{\text {real }} \sim \downarrow+\int K$
- for K two possibilities: - both together form a jet
- define distance in rapidity-azimuthal angle space

$$
\begin{gathered}
R_{12}=\sqrt{\left(y_{1}-y_{2}\right)^{2}+\left(\phi_{1}-\phi_{2}\right)^{2}} \\
\quad \text { - } \theta\left(R_{0}-R_{12}\right): K \\
\quad \text { - } \theta\left(R_{12}-R_{0}\right): K^{\times}
\end{gathered}
$$

- open integration to extract jet

$$
\mathcal{v} \sim p+\int k+\int k^{\times}
$$

Central jet-vertex in kt-factoriztion at NLO

Florian Schwensen

- real and virtual parts with different $x_{1,2}$ configurations \rightsquigarrow different $g\left(x_{1}, q_{a}\right) g\left(x_{2}, q_{b}\right) \leadsto$ cancellation of divergences?
$\mathcal{v}=\left(\ngtr+\int k\right)+\int(k-k)+\int\left(k^{\times}-k^{\times}\right) \quad$ Y■S

Central jet-vertex in kt-factoriztion at NLO

Florian Schwensen

- real and virtual parts with different $x_{1,2}$ configurations \rightsquigarrow different $g\left(x_{1}, q_{a}\right) g\left(x_{2}, q_{b}\right) \leadsto$ cancellation of divergences?
$v=\left(\vdash+\int k\right)+\int(k-k)+\int\left(k^{x}-k^{*}\right) \quad Y E S$
- extended NLO BFKL to obtain the NLO jet vertex in kt-factorization
- procedure allows one to use a jet algorithm in the BFKL kernel
- method can be used for NLO jet-vertex in $\gamma^{*} \gamma^{*}$ and hh inclusive single jet production

This analysis: a contribution to the more general question of how to formulate kt factorization at NLO

Prompt photons with kt-factorization at high E

Prompt photon's are:
ㅁ coupled to the interacting quarks
\square provide a clear information about the QCD dynamics
\square insensitive to the effects of final state hadronization

- sensitive to the parton distribution functions (PDFs)

Nikolai Zotov

Motivation

Prompt photons with kt-factorization at high E

Prompt photon's are:
ㅁ coupled to the interacting quarks
\square provide a clear information about the QCD dynamics
\square insensitive to the effects of final state hadronization.

- sensitive to the parton distribution functions (PDFs)

NLO PQCD $\quad 30-40 \%$ below the HERA data (specially in the rear η^{γ} region)
$\square \quad$ not describe the shape of transverse energy E_{T}^{γ} distribution at Tevatron
\square not describe the ratio of cross sections $\sigma(630 \mathrm{GeV}) / \sigma(1800 \mathrm{GeV})$ at Tevatron

Prompt photons with kt-factorization at high E

k_{T}-smearing?

Nikolai Zotov
\square additional intrinsic transverse momentum k_{T} of the incoming partons is introduced in NLO calculations
\square it is assumed that this k_{T} have a Gaussian-like distribution
ㅁ $\left\langle k_{T}\right\rangle \sim 0.5 \mathrm{GeV}$ at UA6 and $\left\langle k_{T}\right\rangle \sim 2 \mathrm{GeV}$ at Tevatron

Prompt photons with kt-factorization at high E

k_{T}-smearing?

Nikolai Zotov
\square additional intrinsic transverse momentum k_{T} of the incoming partons is introduced in NLO calculations
\square it is assumed that this k_{T} have a Gaussian-like distribution
ㅁ $\left\langle k_{T}\right\rangle \sim 0.5 \mathrm{GeV}$ at UA6 and $\left\langle k_{T}\right\rangle \sim 2 \mathrm{GeV}$ at Tevatron

Another possibility

Simple k_{T}-smearing picture can be modified in the framework of k_{T}-factorization (or semihard) approach of QCD
In this approach, the partonic transverse momentum is generated in the course of the non-collinear parton evolution
\square based on the BFKL or CCFM evolution equations
\square can incorporate the leading $\ln 1 / x$ terms

Prompt photons with kt-factorization at high E

Nikolai Zotov

ㅁ k_{T}-factorization approach of QCD gives a reasonable description of the recent HERA Hope to include in the and Tevatron data
\square Realistic predictions at LHC
pdf fits prompt photons at the LHC because of higher statistics

Power corrections from an s-channel approach

Francesco Hautmann

Motivation:

Proton structure at small x :

- investigated extensively at HERA
- valuable input in LHC physics program

Gluon distribution at $x \lesssim 10^{-2}$ determined from DIS data at high energies and moderate Q^{2}
\triangleright power corrections from multi-parton correlations potentially significant?

- $F_{2} \sim \Sigma$ (flavor-singlet quark)
- \dot{F}_{2} driven by gluon
$\Rightarrow \dot{F}_{2} \sim \dot{\Sigma} \sim P_{q g} \otimes G\left[1+\mathcal{O}\left(1 / Q^{2}\right)\right]+$ quark term

Power corrections from an s-channel approach

parton picture

s-channel picture

Francesco Hautmann

- systematic factorization of pdf's and hard scattering at large Q^{2}
- calculability of higher order perturbative corrections
- no systematic factorization; contributions to all orders in $1 / Q^{2}$
- basic degrees of freedom are described by matrix elements
of Wilson lines ("color dipoles" at simplest level)
- possibility to incorporate nonperturbative small-x dynamics ("saturation")

Aim: connect the two pictures with enough precision so as to identify the power correction to $d F_{2} / d \ln Q^{2}$

Basic idea: expand F in powers of $1 / Q^{2}$

- identify factorized partonic result using previous answer for renormalized f_{q}
- determine the power correction from the remainder

Power corrections from an s-channel approach

Francesco Hautmann
$\frac{d F_{T}}{d \ln Q^{2}}=\left(\frac{d F_{T}}{d \ln Q^{2}}\right)_{\mathrm{LP}}+\sum_{n=1}^{\infty} R_{n} \frac{\lambda_{n}^{2}}{\left(Q^{2}\right)^{n}}$
Expand in powers of $1 / Q^{2}$, at low Q^{2} and x . Identity the power correction by subtracting the leading-power.
but: slow fall-off for medium Q^{2} (e.g., $1 / Q^{\lambda}, \lambda=1.2$, in $[1,10] \mathrm{GeV}^{2}$ for $x \simeq 10^{-3}$)

- Rather extensive approximations used (high-energy, dipole approximation); modeling of nonperturbative matrix element; summation of power expansion: can we do better?

Question: what happens for F_{L} ? are there cancellations in F_{2} from F_{T} and F_{L} ?

All orders and non-global observables

Gennaro Corcella

Non-global observables are sensitive to radiation in a limited region of the phase space

All orders and non-global observables

Gennaro Corcella

Non-global observables are sensitive to radiation in a limited region of the phase space

Multiple radiation from a $q \bar{q}$ dipole in a region Ω

Contributions $\alpha_{S}^{2} L^{2}$: non-global logarithm

All orders and non-global observables

Gennaro Corcella

Non-global observables are sensitive to radiation in a limited region of the phase space

Multiple radiation from a $q \bar{q}$ dipole in a region Ω

Contributions $\alpha_{S}^{2} L^{2}$: non-global logarithm

$$
E_{t}=\sum_{i \in \Omega} E_{t i} \quad \Sigma\left(Q, Q_{\Omega}\right)=\frac{1}{\sigma} \int_{0}^{Q_{\Omega}} \frac{d \sigma}{d E_{t}} d E_{t}=\exp \left(-4 C_{F} A_{\Omega} t\right) S(t)
$$

$\exp \left(-4 C_{F} A_{\Omega} t\right)$: exponentiation of primary radiation (angular ordering)
$S(t)=\sum_{n=2} S_{n} t^{n}$: non-global logarithms, due to correlated gluon emissions

All orders and non-global observables

Angular ordering

After azimuthal average:
$W \longrightarrow \frac{1}{1-\cos \theta_{13}} \Theta\left(\theta_{12}-\theta_{13}\right)+\frac{1}{1-\cos \theta_{23}} \Theta\left(\theta_{12}-\theta_{23}\right)$

Gennaro Corcella

All orders and non-global observables

Angular ordering

After azimuthal average:
$W \longrightarrow \frac{1}{1-\cos \theta_{13}} \Theta\left(\theta_{12}-\theta_{13}\right)+\frac{1}{1-\cos \theta_{23}} \Theta\left(\theta_{12}-\theta_{23}\right)$

Gennaro Corcella

Monte Carlo event generators are often tuned to non-global observables

All orders and non-global observables

Angular ordering

After azimuthal average:
$W \longrightarrow \frac{1}{1-\cos \theta_{13}} \Theta\left(\theta_{12}-\theta_{13}\right)+\frac{1}{1-\cos \theta_{23}} \Theta\left(\theta_{12}-\theta_{23}\right)$

Gennaro Corcella

Monte Carlo event generators are often tuned to non-global observables
Angular ordering catches a relevant part of non-global logarithms

All orders and non-global observables

Angular ordering

After azimuthal average:
$W \longrightarrow \frac{1}{1-\cos \theta_{13}} \Theta\left(\theta_{12}-\theta_{13}\right)+\frac{1}{1-\cos \theta_{23}} \Theta\left(\theta_{12}-\theta_{23}\right)$

Monte Carlo event generators are often tuned to non-global observables
Angular ordering catches a relevant part of non-global logarithms
HERWIG: $Q^{2}=E^{2}(1-\cos \theta) \simeq E^{2} \theta^{2} / 2$ Soft limit: angular ordering
PYTHIA (up to 6.2 version): $Q^{2}=p^{2}$
It includes angular ordering via an additional veto
PYTHIA 6.3: $Q^{2}=k_{T}^{2}$ (better treatment of angular ordering)

All orders and non-global observables

Comparing resummation and parton showers

Gennaro Corcella

$Q=10^{5} \mathrm{GeV}$ to neglect subleading effects $\mathcal{O}\left(\alpha_{S}(Q)\right)$ and quark masses

Difference with respect to the full resummed result for $E_{t}=10 \mathrm{GeV}$:

- 10\% (HERWIG); + 7.5\% (PYTHIA new); - 50\% (PYTHIA old)

All orders for non-global observables

Gennaro Corcella

\Rightarrow remarkable discrepancy between new PYTHIA model and resummation at large rapidity slices.
Further investigation needed.

All orders for non-global observables

Gennaro Corcella

\Rightarrow remarkable discrepancy between new PYTHIA model and resummation at large rapidity slices.
Further investigation needed.

Need care when fitting event generators to non-global observables! In MC tuning may incorporate in the underlying event or in NP parameters effects which are calculable in PT.

Do we have the necessary tools/measurements for best tuned MCs? Need to clarify the above discrepancies!

SISCone:seedless infrared safe cone jet-finder

Gregory Soyez

Usual seeded method to search stable cones: midpoint cone algorithm

- For an initial seed

1. sum the momenta of all particles within the cone centred on the seed
2. use the direction of that momentum as new seed
3. repeat $1 \& 2$ until stable state cone reached

- Sets of seeds:

1. All particles (above a p_{t} threshold s)
2. Midpoints between stable cones found in 1.

SISCone:seedless infrared safe cone jet-finder

Gregory Soyez
Usual seeded method to search stable cones: midpoint cone algorithm

- For an initial seed

1. sum the momenta of all particles within the cone centred on the seed
2. use the direction of that momentum as new seed
3. repeat $1 \& 2$ until stable state cone reached

- Sets of seeds:

1. All particles (above a p_{t} threshold s)
2. Midpoints between stable cones found in 1.

Problems:

- the p_{t} threshold s is collinear unsafe
- seeded approach \Rightarrow stable cones missed \Rightarrow infrared unsafety

SISCone:seedless infrared safe cone jet-finder

Gregory Soyez

\longrightarrow IR unsafety of the midpoint algorithm

SISCone:seedless infrared safe cone jet-finder

Gregory Soyez
SISCone finds provably all stable cones, without introducing seeds

SISCone:seedless infrared safe cone jet-finder

Gregory Soyez
SISCone finds provably all stable cones, without introducing seeds
Test of IR-safety

With currently used cones important
fraction of events fails IR-safety test.

SISCone:seedless infrared safe cone jet-finder

Gregory Soyez

SISCone finds provably all stable cones, without introducing seeds

With currently used cones important fraction of events fails IR-safety test.

Speed issue

NB: speed IS an issue! With a naive implementation of seedless cone need 10^{17} years to cluster 100 particles!

SISCone:seedless infrared safe cone jet-finder

Impact of SISCone:

Gregory Soyez

Inclusive jet spectrum

Ratio midpoint/SISCone:

- Differences up to 6%
- Less effect from underlying event in SISCone

Jet mass spectrum

\triangleright Differences of order 10 \%

\triangleright Larger effects in the tail

Jet areas and what they are good for

The 'active area' of a jet is (proportional to) the number of uniformly distributed infinitely soft particles that get clustered in it

After the clustering, a given set of ghosts belong to each jet
Their number (times the average area of a single ghost) defines the catchment area of the jet

Jet areas and what they are good for

Applications:

Matteo Cacciari

(NB. this is true on an event-by-event basis)

$\mathrm{P}_{\mathbf{T}}$ /Area is fairly constant, except for the hard jets

Jet areas and what they are good for

Matteo Cacciari

When a hard event is superimposed on a roughly uniformly distributed background, study of transverse momentum/area of each jet allows one to determine the noise density $\boldsymbol{\rho}$ (and its fluctuation) on an event-by-event basis
 ria

After subtraction the correct mass is recovered with good resolution

GI Given a proper jet-finder, jet areas can be defined
VI They can be used to estimate the level of a uniformly distributed noise

V1 They can be used to subtract the background contribution from the hard jets

Jets: cone versus kt

We heard many rumours about the kt-algorithm being not well behaved in some contexts

Now that we have
\checkmark an efficient kt-algorithm
\checkmark an efficient, infrared-safe Cone algorithm

\checkmark methods to estimate noise/background/sensitivity to UE

> We hope to see soon a systematic comparison between the two types of algos (e.g. sensitivity to underlying event, hadronization effects, etc.)

Part II: experimental summary by
 Claire Gwenlan

