A Monte Carlo Model for Jet Quenching Jet Quenching from Soft QCD Scattering in the Quark-Gluon Plasma

Korinna Zapp

Physikalisches Institut Universität Heidelberg

HERA - LHC Workshop DESY 14. 3. 2007

project with Gunnar Ingelman, Johan Rathsman, Johanna Stachel A MC Model for Jet Quenching

Korinna Zapp

ntroduction

Our Model Description Results

Outline

Introduction

Our Model Description Results

Summary & Outlook

A MC Model for Jet Quenching

Korinna Zapp

Introduction

Our Model Description Results

Outline

Introduction

our Model Description Results

Summary & Outlook

A MC Model for Jet Quenching

Korinna Zapp

Introduction

Our Model Description Results

What is so Exciting about Jet Quenching?

jet quenching: suppression of high- p_{\perp} particles (jet particles) in collisions of ultra-relativistic heavy nuclei

- origin: energetic quarks and gluons interact with the QGP and lose energy
- jet quenching carries information about the QGP
- ⇒ want to use jet quenching as probe to determine QGP parameters
- But then we have to understand the energy loss mechanism.
 - induced gluon radiation (QCD bremsstrahlung)
 - elastic collisions
 - but there must be more to it

A MC Model for Jet Quenching

Korinna Zapp

Introduction

Our Model Description Results

Some Nomenclature

A + A collision in the transverse plane

centrality: fraction of geometrical cross section ($\sim b^2$)

A MC Model for Jet Quenching

Korinna Zapp

Introduction

Our Model Description Results

The Nuclear Modification Factor

$$R_{AB}(p_{\perp},\eta) = \left(\frac{1}{N_{\text{evt}}}\frac{\mathrm{d}^2 N^{AB}}{\mathrm{d}p_{\perp}\mathrm{d}\eta}\right) \cdot \left(\frac{\langle N_{\text{coll}} \rangle}{\sigma_{\text{inel}}^{\text{pp}}}\frac{\mathrm{d}^2 \sigma^{\text{pp}}}{\mathrm{d}p_{\perp}\mathrm{d}\eta}\right)^{-1}$$

A MC Model for Jet Quenching

Korinna Zapp

Introduction

Our Model Description Results

Origin of Jet Quenching

Adler et al., PHENIX Collaboration, PRL 91 (2003) 072303

- \blacktriangleright no suppression in d+Au collisions \rightarrow jet quenching final state effect
- ► small enhancement due to initial state rescattering → Cronin effect

A MC Model for Jet Quenching

Korinna Zapp

Introduction

Our Model Description Results

Disappearance of the away-side jet

A MC Model for

Jet Quenching Korinna Zapp

Adams et al., STAR Collaboration, PRL 91 (2003) 072304

trigger particles: $4 \text{ GeV} < p_{\perp} < 6 \text{ GeV}$ associated particles: $2 \text{ GeV} < p_{\perp} < p_{\perp}(\text{trig})$

- disappearance of the away-side jet in central Au + Au collisions
- again no suppression in d + Au

Reappearance of the away side jet

A MC Model for Jet Quenching

Korinna Zapp

Introduction

Our Model Description Results

Summary & Outlook

Mark Horner's talk at Quark Matter 2006

Conclusions

- The strong suppression and modification of jets in heavy ion collisions may reveal information about the properties of the Quark - Gluon Plasma.
- There is a wealth of exciting data (mainly differential observables)
 - *R*_{AA}(*p*_⊥,φ,η) for identified particles and different beam energies and nuclei
 - two particle correlations in ϕ and η in different p_{\perp} bins
 - three particle correlations
 - ► azimuthal anisotropy (v₂) as function of p_⊥ and particle species
 - *R*_{AuAu} and *v*₂ for electrons from heavy flavour decays
 ...
- We are dealing with a very complex system (geometry, expansion, etc.), fluctuations may be important.
- \Rightarrow We would like to have a MC.

A MC Model for Jet Quenching

Korinna Zapp

Introduction

Our Model Description Results

Outline

Introduction

Our Model Description Results

Summary & Outlook

A MC Model for Jet Quenching

Korinna Zapp

Introduction

Our Model
Description
Description

Overview

A MC Model for Jet Quenching

Korinna Zapp

Introduction

Our Model Description

Summarv

Modelling of the QGP

Geometry: N_{part}, N_{coll} etc. from simple Glauber - model (sharp sphere or Woods - Saxon potential)

Eskola, Kajantie, Lindfors, Nucl. Phys. B 323 (1989)

EOS: ideal relativistic gluon gas

$$\Rightarrow n = rac{g}{\pi^2} \zeta(3) T^3$$
 & $\epsilon = rac{\pi^2 g}{30} T^4$

expansion: boost-invariant longitudinal expansion

$$T(\tau) \propto \tau^{-1/3} \Rightarrow n(\tau) \propto \tau^{-1} & \epsilon(\tau) \propto \tau^{-4/3} \\ (\tau = \sqrt{t^2 - z^2})$$

Bjorken, Phys. Rev. D 27 (1983)

[GeV/fm³]

-8-6-4-2 0

[fm]

local energy density: $\epsilon(x,y, au) \propto N_{\mathsf{part}}(x,y) \cdot au^{-4/3}$

A MC Model for Jet Quenching

Korinna Zapp

Introduction

Our Model Description

Summary & Outlook

 $t = 3 \, \text{fm/c}$

4 6 88

Interactions with the Plasma

Basic idea soft colour interactions with background important in p+p collisions (SCI Model by G. Ingelman et al.) Edin, Ingelman, Rathsman, Phys. Lett. B 366 (1996) 371 Enberg, Ingelman, Timneanu, Phys. Rev. D 64 (2001) 114015 ⇒ should occur also in a QGP much more interactions → even small momentum transfer may be important → jet quenching?

Soft colour interactions with (small) momentum transfer

- treated as elastic scattering
- successive scatterings assumed to be independent
- momentum transfer t Gaussian distributed
- interaction probability is 0.5 for quarks and 0.75 for gluons

The model can be applied to heavy quarks without changes.

A MC Model for Jet Quenching

Korinna Zapp

Introduction

Our Model Description Results

Model Parameters

default values:		
Cronin parameter	α	0.5 GeV ²
QGP formation time	$ au_i$	0.2 fm
initial energy density $\epsilon(au=1{ m fm})$	ϵ_0	$5.5\mathrm{GeV}\mathrm{fm}^{-3}$
critical temperature	T _c	0.175 GeV
gluon mass	mg	0.2 GeV
interaction probability quark	p_q	0.5
interaction probability gluon	p_g	0.75
width of <i>t</i> - distribution	σ_t	0.5GeV^2
screening radius	$R_{\rm scr}$	0.3 fm
\Rightarrow scattering cross section: $\sigma = 1.9\mathrm{mb}$		
alternative:		
screening radius	R _{scr}	0.5 fm
\Rightarrow scattering cross section: $\sigma = 5.2 \mathrm{mb}$		

A MC Model for Jet Quenching

Korinna Zapp

Introduction

Our Model Description Results

Nuclear Modification Factor

- most central collisions: large cross section scenario consistent with data
- most peripheral collisions: two scenarios are similar and in agreement with data

Adler et al., PHENIX Collaboration, PRL 91 (2003)

A MC Model for Jet Quenching

Korinna Zapp

Introduction

Our Model Description Results

Nuclear Modification Factor

A MC Model for Jet Quenching

Korinna Zapp

ntroduction

Our Model Description Besults

Nuclear Modification Factor

A MC Model for Jet Quenching

Azimuthal Correlation

trigger particles: 4 GeV $< p_{\perp} < 6$ GeV associated particles: 2 GeV $< p_{\perp} < p_{\perp}$ (trig)

 We see a suppression of the away-side jet but no disappearance.

Adams et al., STAR Collaboration, PRL 91 (2003) 072304

A MC Model for Jet Quenching Korinna Zapp

Introduction

Our Model

Results

Surface Bias

r: distance of hard scattering from centre

We see a moderate surface bias in accordance with the two particle correlation.

A MC Model for Jet Quenching

Korinna Zapp

Introduction

Our Model Description Results

Energy Loss and Geometry

 It is difficult to get a strong suppression due to the rapid expansion, emission from the surface does not help. A MC Model for Jet Quenching

Korinna Zapp

Introduction

Our Model Description Results

Azimuthal Anisotropy

A MC Model for Jet Quenching Korinna Zapp

ntroduction

Our Model Description Results

Summary &

Adams et al., STAR Collaboration, Phys. Rev. C 72 (2005) 014904

- effect weaker than in data
- big difference between potentials, although R_{AuAu}(p⊥) is practically the same

Electron/Positron R_{AuAu}

now we are looking at heavy flavours

A MC Model for Jet Quenching Korinna Zapp Introduction Our Model Description Results Summary & Outlook

The suppression of electrons is somewhat too weak even with the large cross section.

> Adler *et al.*, PHENIX Collaboration, PRL **96** (2006) Abelev *et al.*, STAR Collaboration, nucl-ex/0607012

Outline

Introduction

Our Model Description Results

Summary & Outlook

A MC Model for Jet Quenching

Korinna Zapp

Introduction

Our Model Description Results

Summary & Outlook

Summary

- Energy loss through scattering is important, although it cannot account for the whole jet quenching.
- The expansion as well as geometrical aspects turned out to be crucial.
- Furthermore, with a MC one has access to practically all observables.

Outlook

 How does the medium affect the other processes, especially parton showers and hadronisation? – project with Hans Jürgen Pirner

> Zapp, Ingelman, Rathsman, Stachel, PLB 637 (2006) 179 Zapp, Ingelman, Rathsman, Stachel, hep-ph/0702201

A MC Model for Jet Quenching

Korinna Zapp

Introduction

Our Model Description Results

A MC Model for Jet Quenching

Korinna Zapp

Introduction

Our Model Description Results

Number of Gluons Encountered by a Hard Parton

A MC Model for Jet Quenching

Korinna Zapp

looks like expected \surd