

Prospects for Diffractive and Forward Physics at the LHC

K. Österberg,

High Energy Physics Division, Department of Physical Sciences, University of Helsinki & Helsinki Institute of Physics

HERA and the LHC workshop, DESY 12–16 March 2007

Author List

CERN/LHCC 2006–039/G–124 CMS Note–2007/002 TOTEM Note 06–5

M. Albrow**1, G. Antchev**3, M. Arneodo**2, V. Avati**3, **4, P. Bartalini**5, V. Berardi**6, U. Bottigli**24, M. Bozzo"7, E. Brücken"8, V. Burtovoy"9, A. Buzzo"7, M. Calicchio"6, F. Capurro"7, M.G. Catanesi"6, P. Catastini"24, M.A. Ciocci"24, R. Croft"10, K. Datsko"9, M. Deile"3, J. De Favereau De Jeneret"11, D. De Jesus Damiao^{*12}, E. Robutti^{*7}, A. De Roeck^{**3}, D. D'Enterria^{**3}, E.A. De Wolf^{**13}, K. Eggert^{**3}, R. Engel**14, S. Erhan**15, F. Ferro**7, F. Garcia Fuentes**8, W. Geist**16, M. Grothe**17, **18, **a, J.P. Guillaud^{**19}, J. Heino^{**8}, A. Hees^{**3, **b}, T. Hilden^{**8}, J. Kalliopuska^{**8}, J. Kaspar^{**20}, P. Katsas^{**21}, V. Kim"22, V. Klyukhin"3, "23, V. Kundrat"20, K. Kurvinen"8, A. Kuznetsov"9, S. Lami"24, J. Lamsa"8, G. Latino"24, R. Lauhakangas"8, E. Lippmaa"25, J. Lippmaa"8, Y. Liu"11, "c, A. Loginov"3, "26, "d M. Lokajicek"²⁰, M. Lo Vetere"⁷, F. Lucas Rodriguez^{**3}, M. Macri^{**7}, T. Mäki^{**8}, M. Meucci^{**24}, S. Minutoli"7, J. Mnich"27, I. Moussienko"28, M. Murray"29, H. Niewiadomski"3, E. Noschis"8, G. Notarnicola⁴⁶, S. Ochesanu⁴¹³, K. Österberg⁴⁸, E. Oliveri⁴⁴, F. Oljemark⁴⁸, R. Orava^{48,430}, M. Oriunno"3, M. Ottela"8, S. Ovyn"11, P. Palazzi"3, A.D. Panagiotou"21, R. Paoletti"24, V. Popov"26, V. Petrov"9, T. Pierzchala"11, K. Piotrzkowski"11, E. Radermacher"3, E. Radicioni"6, G. Rella"6, S. Reucroft^{*28}, L. Ropelewski^{**3}, X. Rouby^{**11}, G. Ruggiero^{**3}, A. Rummel^{**25}, M. Ruspa^{**2}, R. Ryutin^{**9}, H. Saarikko"⁸, G. Sanguinetti"²⁴, A. Santoro"¹², A. Santroni"⁷, E. Sarkisyan-Grinbaum"^{31, "e}, L. Sarycheva^{*23}, F.P. Schilling^{*3}, P. Schlein^{*15}, A. Scribano Memoria^{*24}, G. Sette^{*7}, W. Snoeys^{*3} G.R. Snow^{**32}, A. Sobol^{**32}, ^{**f}, A. Solano^{**17}, F. Spinella^{**24}, P. Squillacioti^{**24}, J. Swain^{**28}, A. Sznajder^{**12}, M. Tasevsky^{**13, **g}, C.C. Taylor^{**4}, F. Torp^{**33}, A. Trummal^{**25}, N. Turini^{**24}, M. Van Der Donckt^{**11}, P. Van Mechelen^{**13}, N. Van Remortel^{**8}, A. Vilela Pereira^{**12}, J. Whitmore^{**33}, D. Zaborov^{**26}

TOTEM physics program

Total cross section with a precision of 1%

- Elastic pp scattering in wide t-range [10⁻³,10] GeV²
- Soft single & central Diffraction
- Low-x dynamics
- Charged particle & energy flow in forward direction
- Semi-hard + hard single & central diffraction: production of jets, W, heavy flavours.....
- Exclusive particle production in central diffraction
- γγ & γp physics

Combined coverage makes a wide range of physics studies possible – from diffraction & proton low-x dynamics to production of SM/MSSM Higgs

Wide coverage in pseudorapidity & proton detection

X = anything : dominated by soft physics Single diffractive (SD) & central diffractive (CD) inclusive cross sections + their s, t, M_X dependence. Fundamental measurements of non-perturbative QCD at LHC!!

X = jets, W, Z, Higgs: hard processes calculable in pQCD Give info on proton structure (dPDFs & GPDs), QCD at high parton densities, multi-parton interactions ... New physics searches in exclusive central diffraction

Content of common document

Includes important experimental issues in measuring forward and diffractive physics but not an exhaustive physics study

- Detailed studies of acceptance & resolution of forward proton detectors
- Trigger
- Background
- Reconstruction of kinematical variables

Several processes studied in detail

- Ch 1: Introduction
- Ch 2: Experimental Set-up
- Ch 3: Measurement of Forward Protons
- Ch 4: Machine induced background
 - Ch 5: Diffraction at low and medium luminosity
 - Ch 6: Triggering on Diffractive Processes at High Luminosity
- Ch 7: Hard diffraction at High Luminosity
- Ch 8: Photon-photon and photon-proton physics
- Ch 9: Low-x QCD physics
- Ch 10: Validation of Hadronic Shower Models used in cosmic ray physics

An important milestone for collaboration between the 2 experiments

Accessible physics depends on luminosity & β^* (i.e. proton acceptance)

TOTEM

Short special runs at high β^* with reduced # of bunches & no crossing angle at IP for measurement of protons scattered only a few μ rad at IP

β* = 1540 m @ 220 m:

large effective length ("magnification of scattering angle") + parallel-topoint focusing in both transverse planes, low-t detection (t ~ $2 \cdot 10^{-3} \text{ GeV}^2$)

requires special injection optics \Rightarrow probably not available at LHC start

optimized for good extrapolation of differential elastic cross section to the optical point \Rightarrow for a precise total cross section measurement

β* = 90 m @ 220 m:

parallel-to-point focusing + large effective length in vertical plane, zero effective length in horizontal plane, t detection to $\sim 2 \cdot 10^{-2} \text{ GeV}^2$

achievable by un-squeezing standard LHC injection optics

optimized for a good fractional momentum loss measurement for diffractive protons \Rightarrow for diffractive measurements

Detect the proton via: its momentum loss (low β^*) its transverse momentum (high β^*)

Forward proton measurement: acceptance (@220 m)

Very little final state dependence since transverse IP size is small.

Better $\sigma(\xi)/\xi$ for $\beta^* = 2/0.5$ m & larger luminosity but limited ξ acceptance ($\xi > 0.02$)

Forward proton measurement: acceptance (@220 m & 420 m)

Proton detectors at 420 m would enlarge acceptance range down to $\xi = 0.002$ at high luminosity (= low β^*).

Forward proton measurement: CD mass acceptance & resolution (β* = 0.5–2 m @ 220& 420 m)

Diffraction at low luminosity (< 10³² cm⁻² s⁻¹): soft diffraction

Single diffraction:

Central diffraction:

 $p p \rightarrow p X p$

Inclusive cross sections & their t, M_x dependence

Event topology

Measure ξ and central mass via:

- proton(s)
- rapidity gap relation $\Delta \eta = -\ln \xi$
- calorimeters

 $\xi^{\pm} = \Sigma_i E_T^i e^{\pm \eta} / \sqrt{s}$

Wide t & ξ acceptance range with TOTEM optics

Soft diffraction important contribution to pile-up at high luminosity

Diffraction at low luminosity: soft central diffraction

Differential mass distribution, acceptance corrected g = 1540 A = 1B'=2 200 1000 1200 1400 1600 1800 2000 0 400 800 600 M_{x} (GeV)

Number of events collected:

 $\beta^* = 90 \text{ m} \quad \int \text{Ldt} = 0.3 \text{ (pb}^{-1})$ (in a few days running):

 $1 < M_X < 2000 \text{ GeV}$ N ~ 10^7

 $\beta^* = 2 \text{ m}$ $\int \text{Ldt} = 100(\text{pb}^{-1})$:

 $M_X > 300 \text{ GeV}$ N ~ 10⁸

Diffraction at low luminosity: rapidity gaps

Forward particle multiplicity: connection to cosmic ray modelling

η

 Models used in hadronic simulation programs differ by more than a factor 2.

- Necessary measurement of forward particle and energy flow.
- SD events trigger: p+T1/T2 (opposite side)
- Study in details SD events

Diffraction at low luminosity: semi-hard diffraction

TOTEM

∫dσ/dp

In case of jet activity ξ can also be determined from calorimeter info:

$$\xi^{\pm} = \Sigma_{i} E_{T}^{i} e^{\pm \eta_{i}} / \sqrt{s}$$

$$\sigma(\xi)/\xi \sim 40 \%$$

Measure cross sections & their t, $M_{X'} p_T^{jet}$ dependence Event topology: exclusive vs inclusive jet production N event collected [acceptance included] $\beta^* = 90 \text{ m } \int Ldt = 0.3 \text{ (pb}^{-1})$

$$B^* = 2 \text{ m} \quad \int \text{Ldt} = 100 \text{ (pb}^{-1})$$

SD:
$$p_T > 50 \text{ GeV}$$
 $5x10^5 \text{ CD:}$ " $3x10^4$

Summary

The common CMS/TOTEM physics document shows that

Short runs at $\beta^* = 90$ m will give excellent opportunities for a wide range of diffractive measurements with a large $\xi \& t$ acceptance Complemented by large M & p_T^{jet} measurements at standard LHC runs Rare diffractive processes need high luminosity & detectors at 420 m TOTEM&CMS measure together at low & medium luminosity: Inclusive diffractive processes from low masses up to a few TeV Diffractive event topologies using rapidity gaps & calorimetry and correlated with leading proton measurements

Forward particle multiplicity as input for cosmic ray modelling

Inclusive diffractive p_T^{jet} cross section from ~ 20 GeV onwards by combining measurements from runs at different β^* 's

Assumption on trigger rates

CD: $\sigma(M_{\chi}) \sim 1.5 - 2.5 \text{ GeV}$ for $60 < M_{\chi} < 200 \text{ GeV}$

Running scenarios

Physics:	low t elastic, σ _{tot} , min bias	large t elastic	Soft diffraction	Soft & semi-hard diffraction
β* [m]	1540 (90)	18, 2, 0.5	1540	90
N of bunches	43	2808	156	156
N of part. per bunch (x 10 ¹¹)	0.3	1.15	(0.6 - 1.15)	1.15
Half crossing angle [µrad]	0	160	0	0
Transv. norm. emitt. [μm rad]	1 (3.75)	3.75	1 - 3.75	3.75
RMS beam size at IP [µm]	454 (200)	95	454 - 880	200
RMS beam diverg. [μrad]	0.29 (2.3)	5.28	0.29 - 0.57	2.3
Peak luminosity [cm ⁻² s ⁻¹]	1.6 (7.3) x 10 ²⁸	3.6 x 10 ³²	2.4 x 10 ²⁹	2 x 10 ³⁰