Small-*x* **Physics and an Improved Dipole Model**

Emil Avsar

In Collaboration with Gösta Gustafson and Leif Lönnblad

Department of Theoretical Physics,

Lund University, Sweden

Outline

- Mueller's Dipole Model.
- Improving the Dipole Model.
- HERA Phenomenology.
- Some predicitons.
- Summary and Conclusions.

Mueller's Dipole Model

Decay probability given by

$$\frac{d\mathcal{P}}{dY} = \frac{\bar{\alpha}}{2\pi} \frac{(\boldsymbol{x} - \boldsymbol{y})^2}{(\boldsymbol{x} - \boldsymbol{z})^2 (\boldsymbol{z} - \boldsymbol{y})^2} d^2 \boldsymbol{z}$$
$$\bar{\alpha} = \frac{\alpha_s N_c}{\pi}, \quad Y = \ln 1/x$$

Energy-Momentum Conservation

- $d\mathcal{P}/dY \to \infty$ as $(\boldsymbol{x} \boldsymbol{z})^2$ or $(\boldsymbol{z} \boldsymbol{y})^2 \to 0$. Must be screened by a cutoff.
- Small dipoles interact weakly ⇒ cascade contains many noninteracting virtual dipoles.
- Dipole size $r \sim 1/k_{\perp} \Rightarrow$ Constraint from energy conservation. Evolution similar to LDC model.
- Large effects on the evolution, JHEP 0507:062, hep-ph/0503181.

Multiple Interactions

In Mueller's model all dipoles interact independently via two gluon exchange.

$$f_{ij} = f(\boldsymbol{x}_i, \boldsymbol{y}_i | \boldsymbol{x}_j, \boldsymbol{y}_j) = \frac{\alpha_s^2}{8} \left[\log \left(\frac{(\boldsymbol{x}_i - \boldsymbol{y}_j)^2 (\boldsymbol{y}_i - \boldsymbol{x}_j)^2}{(\boldsymbol{x}_i - \boldsymbol{x}_j)^2 (\boldsymbol{y}_i - \boldsymbol{y}_j)^2} \right) \right]^2.$$

- Multiple scattering series can be summed in eikonal approximation.
- → Unitarised formula for amplitude, $T = 1 - \exp(-\sum_{ij} f_{ij}).$
- Multiple scatterings \Rightarrow pomeron loops.

Saturation and Frame Independence

- Mueller's cascade include saturation effects only from multiple collisions. No loops in cascade evolution.
- \blacksquare \Rightarrow formalism not frame independent.
- Need colour suppressed effects also during evolution.
- **Dipole swing:** $2 \rightarrow 2$ transition.

Gives almost frame independent formalism. hep-ph/0610157, JHEP 01(2007)012.

Generating the Loops

■ Loops can be generated by $1 \rightarrow 2$ splitting $+2 \rightarrow 2$ "swing".

Full Results

Effects of Saturation and Charm Mass

Large effect from c-quark mass. Scaling also in linear approximation. hep-ph/0702087.

Scaling in the Charm Contribution

- HERA charm data does not scale with $\tau = Q^2/Q_s^2$.
 Large *c*-mass modifies the scaling properties.
- γ^* splitting to $q\bar{q}$ given by $\psi_L(z,r,Q^2)$ and $\psi_T(z,r,Q^2)$.
- $\psi \sim \psi(\epsilon r)$ where $\epsilon^2 = z(1-z)Q^2 + m_f^2$.
- Scaling restored if $Q^2/Q_s^2 \rightarrow (Q^2 + n \cdot m_c^2)/Q_s^2$ with $n \sim 4$.

• Finite $m_f \Rightarrow$ cutoff for large dipoles, confinement.

Charm results

• $\tau_c \equiv (Q^2 + 6m_c^2)/Q_s^2$, $m_c = 1.4 {\rm GeV}$.

Emil Avsar, 2007, DESY - p.11/14

Scaling below Q_s^2 ?

- Effect of finite mass approximately multiplicative factor which suppresses σ for smaller Q^2 .
- Solution For higher energy one can reach $\tau < 1$ while keeping
 Q² > 1GeV² ⇒ small suppression from light quark mass.
- Real scaling curve will lie above present HERA results.

Results below Q_s^2

■ Difference about a factor 1.4 for $\tau \approx 0.07$. $Q^2 = 2 \text{GeV}^2 \Rightarrow x \approx 3 \cdot 10^{-9}$. For $x \approx 1.4 \cdot 10^{-7}$, $\tau \approx 0.2 \Rightarrow$ factor 1.2.

Summary and Conclusions

- We have constructed a dipole model based on a set of fairly simple ingredients.
- Using these in a MC we reproduce σ_{tot} for $\gamma^* p$, and also for pp collisions.
- For DIS, charm has large effect. Scaling not dependent on saturation.
- Charm contribution scales fairly well with $(Q^2 + n \cdot m_c^2)/Q_s^2(x)$, $n \sim 4$. (Goncalves et al hep-ph/0607125.)
- Scalebreaking effects at low Q^2 due to large *c*-quark mass and also due to confinement related effects for *u*, *d* and *s*.