Bounds on DIS Observables from the Colour Dipole Picture

Andreas v. Manteuffel

in collaboration with

Carlo Ewerz and Otto Nachtmann

Institut für Theoretische Physik Universität Heidelberg

HERA-LHC Workshop 2007 DESY Hamburg, March 12-16

The Colour Dipole Picture

Dipole Picture (Nikolaev, Zakharov (1991, 1992), Mueller (1994, 1995)):

- successful description of HERA data down to very low Q²
- key idea:
 - ► $\gamma \rightarrow q\bar{q}$
 - + interaction of qq̄ "colour dipole" with p
- saturation at low x ?
 - ▶ means low Q² at HERA, pQCD problematic
 - implement saturation via dipole picture

GBW model

Golec-Biernat, Wüsthoff (1998) model:

dipole cross section

$$\hat{\sigma}_{\text{GBW}}(r, x) = \hat{\sigma}_0 \left(1 - e^{-\frac{1}{4}(r/r_0(x))^2}\right)$$

with dipole size r and saturation scale

$$r_0(x) = \left(\frac{x}{x_0}\right)^{\lambda/2}$$

 $(\hat{\sigma}_0 \approx 23 \text{ mb}, \ \lambda \approx 0.3, \ x_0 \approx 3 \cdot 10^{-4})$

Success of the Dipole Picture Medium - High Q²

full ZEUS open H1 ш~ Q²=2.7 Q²=3.5 Q²=4.5 Q²=6.5 1 0 Q²=12 Q²=8.5 $Q^{2}=10$ Q²=15 1 ٠. 0 Q²=18 Q²=22 Q²=27 Q²=35 1 0 Q²=70 $Q^2 = 90$ =45 $Q^{2} = 60$ 1 0 $Q^2 = 200$ $Q^2 = 120$ $Q^2 = 150$ Q²=250 1 0 10 -4 10 -2 10 -4 10 -2 10 -4 10 -2 10 -4 10 -2 х

Bartels, Golec-Biernat, Kowalski (2002): GBW+DGLAP (solid), GBW (dashed), ZEUS (full), H1 (open)

A. v. Manteuffel (Universität Heidelberg)

Success of the Dipole Picture $Low Q^2$

Bartels, Golec-Biernat, Kowalski (2002): GBW+DGLAP (solid), GBW (dashed), ZEUS BPT97.

A. v. Manteuffel (Universität Heidelberg)

Outline

Foundation of the Dipole Picture

Foundation of the Dipole Picture

Compton Scattering

 $\gamma^{(*)} p \rightarrow \gamma^{(*)} p$ with nonperturbative techniques: C. Ewerz, O. Nachtmann (2004, 2006)

matrix element

$$egin{aligned} \mathcal{M}^{\mu
u}_{s's}(p',p,q) &= rac{i}{2\pi m_p}\int d^4x \; e^{-iqx} \ &\langle p(p',s')| \mathrm{T}^* J^\mu(0) J^
u(x)| p(p,s) \end{aligned}$$

electromagnetic current

$$J^{\lambda}(x) = \sum_{q=u,d,\dots} \bar{q}(x) Q_q \gamma^{\lambda} q(x)$$

interpolating field operator for proton

$$\psi_{p}(x) = \Gamma_{\alpha\beta\gamma} u_{\alpha}(x) u_{\beta}(x) d_{\gamma}(x)$$

- LSZ reduction, Green's functions via functional integrals
- perform q, \bar{q} functional integrations

Skeleton Decomposition

• classify by quark line skeleton

 $\mathcal{M} = \mathcal{M}^{(a)} + \ldots + \mathcal{M}^{(g)}$

- leading at high energy:
 - class (a) and (b)
- (b) higher order in α_s than (a), suppressed at high Q²
- consider class (a) only
 - dipole picture

(f)

(c)

(e)

Towards the Dipole Picture

- transition from currents to qq̄:
 - insert factors of 1 with free quark prop.
- renormalisation of \(\gamma q \overline{q}\) vertex:
 - Dyson-Schwinger-equation
- pinch in ω integration for ΔE → 0, at high q:
 - for quark long. momenta in q direction
 - singles out leading term in M^(a)

proceed with perturbative treatment:

- γqq̄ vertex: leading order
- define bound dipole states

and finally arrive at ...

The Dipole Picture

Compton Scattering in the Dipole Picture

 $\gamma p \rightarrow \gamma p$ cross section

$$\sigma_{T,L}^{\gamma\rho}(W,Q^2) = \sum_q \int \mathrm{d}^2 r \ \hat{\sigma}^{(q)}(r,W) w_{T,L}^{(q)}(r,Q^2)$$

with photon wave function density

$$w_{T,L}^{(q)}(\boldsymbol{r}, \boldsymbol{Q}^2) = \int_0^1 \mathrm{d}\alpha \left| \psi_{T,L}^{(q)}(\alpha, \boldsymbol{r}, \boldsymbol{Q}^2) \right|^2$$

and dipole cross section

$$\hat{\sigma}^{(q)}(r,W)$$

Foundation of the Dipole Picture

Applicability of dipole picture:

Predictions by the framework alone, valid for any dipole cross section $\hat{\sigma}$?

Applicability of dipole picture:

Predictions by the framework alone, valid for any dipole cross section $\hat{\sigma}$?

consider two vector

$$\begin{pmatrix} \sigma_L^{\gamma p} \\ \sigma_T^{\gamma p} \end{pmatrix} = \begin{pmatrix} \sum_q \int d^2 r \ \hat{\sigma}^{(q)}(r, W) \ w_L^{(q)}(r, Q^2) \\ \sum_q \int d^2 r \ \hat{\sigma}^{(q)}(r, W) \ w_T^{(q)}(r, Q^2) \end{pmatrix}$$

Applicability of dipole picture:

Predictions by the framework alone, valid for any dipole cross section $\hat{\sigma}$?

consider two vector

$$\begin{split} & \begin{pmatrix} \sigma_L^{\gamma \rho} \\ \sigma_T^{\gamma \rho} \end{pmatrix} \\ &= \begin{pmatrix} \sum_q \int d^2 r \ \hat{\sigma}^{(q)}(r, W) \ w_L^{(q)}(r, Q^2) \\ \sum_q \int d^2 r \ \hat{\sigma}^{(q)}(r, W) \ w_T^{(q)}(r, Q^2) \end{pmatrix} \\ &= \sum_q \int d^2 r \ \hat{\sigma}^{(q)}(r, W) \begin{pmatrix} w_L^{(q)}(r, Q^2) \\ w_T^{(q)}(r, Q^2) \end{pmatrix} \end{split}$$

Applicability of dipole picture:

Predictions by the framework alone, valid for any dipole cross section $\hat{\sigma}$?

consider two vector

$$\begin{split} & \begin{pmatrix} \sigma_L^{\gamma\rho} \\ \sigma_T^{\gamma\rho} \end{pmatrix} \\ & = \begin{pmatrix} \sum_q \int d^2 r \ \hat{\sigma}^{(q)}(r, W) \ w_L^{(q)}(r, Q^2) \\ \sum_q \int d^2 r \ \hat{\sigma}^{(q)}(r, W) \ w_T^{(q)}(r, Q^2) \end{pmatrix} \\ & = \sum_q \int d^2 r \ \hat{\sigma}^{(q)}(r, W) \begin{pmatrix} w_L^{(q)}(r, Q^2) \\ w_T^{(q)}(r, Q^2) \end{pmatrix} \end{split}$$

Applicability of dipole picture:

Predictions by the framework alone, valid for any dipole cross section $\hat{\sigma}$?

consider two vector

$$\begin{split} & \begin{pmatrix} \sigma_{L^{jp}}^{\gamma p} \\ \sigma_{T}^{\gamma} \end{pmatrix} \\ &= \begin{pmatrix} \sum_{q} \int d^{2}r \ \hat{\sigma}^{(q)}(r, W) \ w_{L}^{(q)}(r, Q^{2}) \\ \sum_{q} \int d^{2}r \ \hat{\sigma}^{(q)}(r, W) \ w_{T}^{(q)}(r, Q^{2}) \end{pmatrix} \\ &= \sum_{q} \int d^{2}r \ \hat{\sigma}^{(q)}(r, W) \begin{pmatrix} w_{L}^{(q)}(r, Q^{2}) \\ w_{T}^{(q)}(r, Q^{2}) \end{pmatrix} \end{split}$$

• \Rightarrow for any dipole picture based $R = \sigma_L^{\gamma p} / \sigma_T^{\gamma p}$:

$$\inf_{q,r} \frac{w_L^{(q)}(r,Q^2)}{w_T^{(q)}(r,Q^2)} \le R \le \sup_{q,r} \frac{w_L^{(q)}(r,Q^2)}{w_T^{(q)}(r,Q^2)}$$

Applicability of dipole picture:

Predictions by the framework alone, valid for any dipole cross section $\hat{\sigma}$?

consider two vector

$$\begin{split} & \begin{pmatrix} \sigma_{L}^{\gamma \rho} \\ \sigma_{T}^{\gamma} \end{pmatrix} \\ &= \begin{pmatrix} \sum_{q} \int d^{2}r \ \hat{\sigma}^{(q)}(r, W) \ w_{L}^{(q)}(r, Q^{2}) \\ \sum_{q} \int d^{2}r \ \hat{\sigma}^{(q)}(r, W) \ w_{T}^{(q)}(r, Q^{2}) \end{pmatrix} \\ &= \sum_{q} \int d^{2}r \ \hat{\sigma}^{(q)}(r, W) \begin{pmatrix} w_{L}^{(q)}(r, Q^{2}) \\ w_{T}^{(q)}(r, Q^{2}) \end{pmatrix} \end{split}$$

• \Rightarrow for any dipole picture based $R = \sigma_L^{\gamma \rho} / \sigma_T^{\gamma \rho}$:

$$\inf_{q,r} \frac{w_L^{(q)}(r,Q^2)}{w_T^{(q)}(r,Q^2)} \le R \le \sup_{q,r} \frac{w_L^{(q)}(r,Q^2)}{w_T^{(q)}(r,Q^2)}$$

C. Ewerz, O. Nachtmann (2006)

Ratio $R = \sigma_L / \sigma_R$: upper bounds from dipole picture and data.

C. Ewerz, O. Nachtmann (2006)

Ratio $R = \sigma_L / \sigma_R$: upper bounds from dipole picture and data.

A. v. Manteuffel (Universität Heidelberg)

Foundation of the Dipole Picture

Bounds on F₂ ratios

Consider structure function $F_2(W, Q^2) = \frac{Q^2}{4\pi^2 \alpha_{em}} (\sigma_L^{\gamma \rho} + \sigma_T^{\gamma \rho})$ at two different Q^2

Bounds on F₂ ratios

Consider structure function $F_2(W, Q^2) = \frac{Q^2}{4\pi^2 \alpha_{em}} (\sigma_L^{\gamma p} + \sigma_T^{\gamma p})$ at two different Q^2

start with two vector

$$\begin{pmatrix} F_2(W, Q_1^2) \\ F_2(W, Q_2^2) \end{pmatrix} = \sum_q \int d^2 r \, \frac{\hat{\sigma}^{(q)}(r, W)}{4\pi^2 \alpha_{\rm em}} \cdot \\ \cdot \begin{pmatrix} Q_1^2 \left(w_T^{(q)}(r, Q_1^2) + w_L^{(q)}(r, Q_1^2) \right) \\ Q_2^2 \left(w_T^{(q)}(r, Q_2^2) + w_L^{(q)}(r, Q_2^2) \right) \end{pmatrix}$$

Bounds on F_2 ratios

Consider structure function $F_2(W, Q^2) = \frac{Q^2}{4\pi^2 \alpha_{em}} (\sigma_L^{\gamma p} + \sigma_T^{\gamma p})$ at two different Q^2

start with two vector

$$\begin{pmatrix} F_2(W, Q_1^2) \\ F_2(W, Q_2^2) \end{pmatrix} = \sum_q \int d^2 r \, \frac{\hat{\sigma}^{(q)}(r, W)}{4\pi^2 \alpha_{\text{em}}} \cdot \\ \cdot \begin{pmatrix} Q_1^2 \left(w_T^{(q)}(r, Q_1^2) + w_L^{(q)}(r, Q_1^2) \right) \\ Q_2^2 \left(w_T^{(q)}(r, Q_2^2) + w_L^{(q)}(r, Q_2^2) \right) \end{pmatrix}$$

• \Rightarrow for any dipole cross section $\hat{\sigma}^{(q)}(r, W)$: $\inf_{q,r} \frac{f^{(q)}(r, Q_1^2)}{f^{(q)}(r, Q_2^2)} \leq \frac{F_2(W, Q_1^2)}{F_2(W, Q_2^2)} \leq \sup_{q,r} \frac{f^{(q)}(r, Q_1^2)}{f^{(q)}(r, Q_2^2)}$ with

$$f^{(q)}(r, Q^2) \equiv Q^2 \left(w_T^{(q)}(r, Q^2) + w_L^{(q)}(r, Q^2) \right)$$

C. Ewerz, O. Nachtmann (2006)

Improved Bounds on Q^2 dependence of σ_r

Consider reduced cross section

$$\sigma_r(W, Q^2) = \frac{Q^2}{4\pi^2 \alpha_{\text{em}}} \left(\sigma_T^{\gamma p} + \frac{2(1-y)}{1+(1-y)^2} \sigma_L^{\gamma p} \right)$$

with $y = \frac{W^2 + Q^2}{s_{ep}}$ at three different Q^2

Improved Bounds on Q^2 dependence of σ_r Consider reduced cross section

$$\sigma_r(W,Q^2) = \frac{Q^2}{4\pi^2 \alpha_{\rm em}} \left(\sigma_T^{\gamma p} + \frac{2(1-y)}{1+(1-y)^2} \sigma_L^{\gamma p} \right)$$

with $y = \frac{W^2 + Q^2}{s_{ep}}$ at three different Q^2

• better test of Q^2 struct., σ_r direct obs.

Improved Bounds on Q^2 dependence of σ_r

Consider reduced cross section

$$\sigma_r(W,Q^2) = \frac{Q^2}{4\pi^2 \alpha_{\rm em}} \left(\sigma_T^{\gamma \rho} + \frac{2(1-y)}{1+(1-y)^2} \sigma_L^{\gamma \rho} \right)$$

with $y = \frac{W^2 + Q^2}{s_{ep}}$ at three different Q^2

- better test of Q^2 struct., σ_r direct obs.
- start from three vector

$$\begin{pmatrix} \sigma_{r}(W, Q_{1}^{2}) \\ \sigma_{r}(W, Q_{2}^{2}) \\ \sigma_{r}(W, Q_{3}^{2}) \end{pmatrix} = \\ \sum_{q} \int d^{2}r \, \frac{\hat{\sigma}^{(q)}(r, W)}{4\pi^{2} \alpha_{\text{em}}} \begin{pmatrix} f^{(q)}(r, Q_{1}^{2}, W) \\ f^{(q)}(r, Q_{2}^{2}, W) \\ f^{(q)}(r, Q_{3}^{2}, W) \end{pmatrix}$$

with

$$f^{(q)}(r, Q^2, W) = Q^2 \left(w_T + \frac{2(1-y)}{1+(1-y)^2} w_L \right)$$

Correlated ratio bounds on σ_r - flavour and W dependence Bounds for $(Q_1^2, Q_2^2, Q_3^2) = (4, 10, 80)$ GeV²:

Correlated ratio bounds on σ_r - flavour and W dependence Bounds for $(Q_1^2, Q_2^2, Q_3^2) = (4, 10, 80)$ GeV²:

Correlated ratio bounds on σ_r confronted with data

high W, moderate
$$Q^2 \longrightarrow$$

 $W = 247 \text{ GeV},$
 $(Q_1^2, Q_2^2, Q_3^2) = (2, 12, 35) \text{ GeV}^2$

$$\begin{pmatrix}
\varphi_r^{(q)}(Q_2^2, W) / \sigma_r^{(q)}(Q_3^2, W) \\
\varphi_r^{(q)}(Q_3^2, W) \\
\varphi_r^{(q)}(Q_$$

Correlated ratio bounds on σ_r confronted with data

high W, moderate
$$Q^2 \longrightarrow$$

W = 247 GeV,
 $(Q_1^2, Q_2^2, Q_3^2) = (2, 12, 35) \text{ GeV}^2$
med. W, incl. higher $Q^2 \longrightarrow$
W = 105 GeV,
 $(Q_1^2, Q_2^2, Q_3^2) = (4, 35, 90) \text{ GeV}^2$
 $W = 105 \text{ GeV},$
 $(Q_1^2, Q_2^2, Q_3^2) = (4, 35, 90) \text{ GeV}^2$
 $W = 105 \text{ GeV},$
 $(Q_1^2, Q_2^2, Q_3^2) = (4, 35, 90) \text{ GeV}^2$
 $W = 105 \text{ GeV},$
 $(Q_1^2, Q_2^2, Q_3^2) = (4, 35, 90) \text{ GeV}^2$

Correlated ratio bounds on σ_r confronted with data

high W, moderate
$$Q^2 \longrightarrow$$

 $W = 247 \text{ GeV},$
 $(Q_1^2, Q_2^2, Q_3^2) = (2, 12, 35) \text{ GeV}^2$
med. W, incl. higher $Q^2 \longrightarrow$
 $W = 105 \text{ GeV},$
 $(Q_1^2, Q_2^2, Q_3^2) = (4, 35, 90) \text{ GeV}^2$
lower W, incl. high $Q^2 \longrightarrow$
 $W = 75 \text{ GeV},$
 $(Q_1^2, Q_2^2, Q_3^2) = (4, 45, 120) \text{ GeV}^2$
 $W = 75 \text{ GeV},$
 $(Q_1^2, Q_2^2, Q_3^2) = (4, 45, 120) \text{ GeV}^2$
 $M = 75 \text{ GeV},$
 $(Q_1^2, Q_2^2, Q_3^2) = (4, 45, 120) \text{ GeV}^2$
 $W = 105 \text{ GeV},$
 $(Q_1^2, Q_2^2, Q_3^2) = (4, 45, 120) \text{ GeV}^2$
 $W = 105 \text{ GeV},$
 $(Q_1^2, Q_2^2, Q_3^2) = (4, 45, 120) \text{ GeV}^2$
 $(Q_1^2, Q_2^2, Q_3^2) = (4, 45, 120) \text{ GeV}^2$

Q² Ranges for Dipole Picture allowed by ALLM97

In which kinematical regime may the dipole picture be applied, given any $\hat{\sigma}^{(q)}(r, W)$?

Q^2 Ranges for Dipole Picture allowed by ALLM97

In which kinematical regime may the dipole picture be applied, given any $\hat{\sigma}^{(q)}(r, W)$?

- problem: few data with W binning, use ALLM97 fit to F2 instead
- systematically search allowed Q² ranges incl. subrange tests

Q^2 Ranges for Dipole Picture allowed by ALLM97

In which kinematical regime may the dipole picture be applied, given any $\hat{\sigma}^{(q)}(r, W)$?

- problem: few data with W binning, use ALLM97 fit to F₂ instead
- systematically search allowed Q² ranges incl. subrange tests
- result: lowest Q² not significant if lower than ≈ 1 GeV² but: upper Q² bound for dipole picture at given W:

Q² Ranges for Dipole Picture allowed by ALLM97

In which kinematical regime may the dipole picture be applied, given any $\hat{\sigma}^{(q)}(r, W)$?

- problem: few data with W binning, use ALLM97 fit to F₂ instead
- systematically search allowed Q² ranges incl. subrange tests
- result: lowest Q² not significant if lower than ≈ 1 GeV² but: upper Q² bound for dipole picture at given W:

Q^2 Ranges for Dipole Picture allowed by ALLM97

In which kinematical regime may the dipole picture be applied, given any $\hat{\sigma}^{(q)}(r,W)$?

- problem: few data with W binning, use ALLM97 fit to F2 instead
- systematically search allowed Q² ranges incl. subrange tests
- result: lowest Q² not significant if lower than ≈ 1 GeV² but: upper Q² bound for dipole picture at given W:

• note: $\hat{\sigma} = \hat{\sigma}(r, W)$ assumed, limits do not apply for $\hat{\sigma} = \hat{\sigma}(r, x)$

Summary

Dipole Picture:

- nonperturbative foundations
- general bounds
 - for $R = \sigma_L / \sigma_T$ and "any" $\hat{\sigma}$, relevant at low Q^2 ?
 - ▶ for $F_2(W, Q_1^2)/F_2(W, Q_2^2)$ and $\hat{\sigma}(r, W) \Rightarrow$ application limited to max. Q^2

Summary

Dipole Picture:

- nonperturbative foundations
- general bounds
 - for $R = \sigma_L / \sigma_T$ and "any" $\hat{\sigma}$, relevant at low Q^2 ?
 - ▶ for $F_2(W, Q_1^2)/F_2(W, Q_2^2)$ and $\hat{\sigma}(r, W) \Rightarrow$ application limited to max. Q^2

Outlook:

- photon wave function beyond leading order
- F_L measurement at HERA

Supplementary Slides

- Energy dependence of the Dipole Cross Section
- Bounds on F₂ ratios vs. ALLM97

The correct energy dependence of $\hat{\sigma}$

Which energy variable should be used for $\hat{\sigma}$?

• limit $W \Rightarrow \infty$, Q^2 fixed:

dipoles similar to hadrons with $\hat{\sigma}^{(q)} = \hat{\sigma}^{(q)}(r, W)$

- ► independent of Q²
- \Leftrightarrow indep. of $x = Q^2/(W^2 + Q^2)$ for given W
- γp scattering in perturbative limit $W, Q^2 \Rightarrow \infty, Q^2/W^2$ fixed:
 - $\hat{\sigma} \propto \text{gluon density } g(x, Q^2)$:
 - dependent on Q²

Way out through photon wave function ?

- photon wave funct. carries Q² info ⇒ favoured r of prod. dipoles dep. on Q²
- consider $\hat{\sigma} = const \cdot r^2$:

$$\sigma^{\gamma p} \propto \int \mathrm{d} r \, r \cdot r^2 \cdot (w_T + w_L)$$

peak at

$$r_{\max}(Q^2) = \frac{C}{Q}$$
, with $C = 2.40$

Can we rewrite energy dependences of $\hat{\sigma}$ based on r_{max} ?

F_2 for GBW using peak size $r_{max}(Q^2)$

Elimination of Q^2 -dependence: F_2 vs. x for Golec-Biernat, Wüsthoff (1999) model.

solid black: original Q^2 -dependent $\hat{\sigma}$, blue dashed: Q^2 -dependence in $\hat{\sigma}$ eliminated by $Q \rightarrow C/r$, red dotted: $Q \rightarrow 2 C/r$.

F_2 for DDR using peak size $r_{max}(Q^2)$

Introduction of Q^2 -dependence: F_2 vs. x for Donnachie,Dosch,Rueter (1999-2001) model. solid black: original Q^2 -independent $\hat{\sigma}$,

blue dashed: Q^2 -dependence introduced by $r \to C/Q$ in $\hat{\sigma}/r^2$.

Energy dependencies and general bounds on F_2 ratios

Simple substitution leads to substantial change:

Bounds on F₂ ratios Results and ALLM97 fit

C. Ewerz, O. Nachtmann (2006)

