The Status of Generator Tuning from Run2

Stephen Mrenna

Computing Division Generators and Detector Simulation Group Fermilab

HERALHC 03/13/07

Work with: G. Choudalakis, R. Culbertson, C. Henderson, B. Knuteson Thanks to: R. Field, MLM

Motivations for Comparing Data to Monte Carlo

Validation

 Check if Data and MC consistent in a control region to extrapolate into the signal region

2 Developing Corrections

 Make the Data and MC agree in a control region to use for different physics

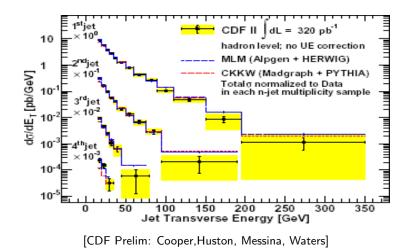
3 Tuning

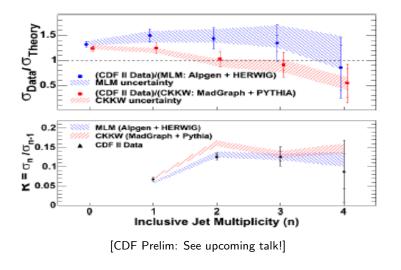
 Test the basic physics and fit the phenomenological parameters inside the event generators

Experiments do mainly 1. and 2.

Pythia UE Tunes

R. Field (CDF) + students + ATLAS people


• Vista analysis of *all* high- p_T data


Knuteson-MIT group + Culbertson (CDF) + SM

Isolated other cases

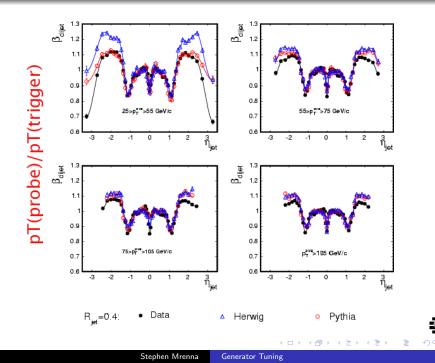
DØ dijet correlations, a few others

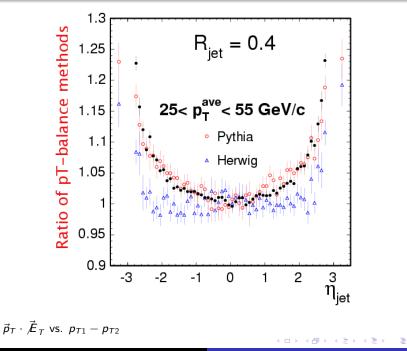
- Method: Compare different predictions of W+multijet events
- Goal: Estimate the systematic errors on the $t\bar{t}$ cross section measurement from theory

There are differences

- Not as important as other systematics for now
- Will be important in the near future

Kt Distributions of Particles in Jets			
Document(s)	Web Page Public Note		
Contact(s)			
Abstract	We present the first measurement of kt distributions for particles in jets produced in p-pbar collisions at center of mass energy of 1.96 TeV. Results were obtained for charged particles within a restricted cone with opening angle of 0.5 rad around the jet axis and for dijet events with masses ranging from about 60 to 740 GeV/c2. Comparison of the experimental data to the theoretical predictions obtained for partons within the framework of the resummed perturbative QCD (Modified Leading Log Approximation) shows good agreement in the range of kt where the soft approximation can be applied. Pythia Tune A and Herwig 6.5 Monte-Carlo generators are consistent with data.		
Comments	Last Update: July 2006 Dataset: 774 pb-1		

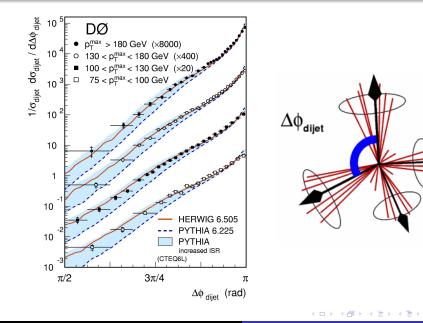



æ

∃►

▲ □ ▶ ▲ 三

- Method: Determine the correction factor between data and Monte Carlo for p_T balance in dijet or γ-jet events
- Goal: Determine an absolute energy calibration for jets to measure the top quark mass



hep-ex/0510047, NIM

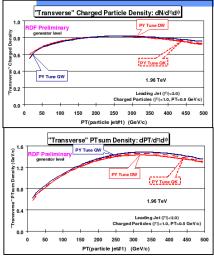
Since this behavior is only found in the dijet samples, we do not consider HERWIG dijet samples for the determination of the η -dependent corrections or their systematic uncertainties. In γ -jet, Z-jet or $t\bar{t}$ events no such problems are seen. At this moment we do not have any explanation for the differences. It could be due to initial or final state radiation, due to the underlying event modeling or many other effects, and it will be studied again in [the] ... future ...

- 1 Theorist [R. Field] joins CDF
- 2 He can look at charged tracks, because he can't screw that up
- 3 Uses this as a vehicle to study UE
- Finds the "best" tune is one that enhances ISR and has decreased MI interaction
- **5** Side note: I express concerns about best fit, but cannot quantify the size of an effect. Concerns are dismissed.
- **6** Tune A is almost exclusively adopted by the experiments and used for LHC extrapolations (with caveats)
- Icts of good physics ensues

DØ Dijet Azimuthal Correlation

The maximum p_T in the initial-state parton shower is directly related to the maximum virtuality that can be adjusted in PYTHIA. The shaded bands in Fig. 3 indicate the range of variation when the maximum allowed virtuality is smoothly increased from the current default by a factor of four [11]. These variations result in significant changes in the low $\Delta \phi_{\text{dijet}}$ region clearly demonstrating the sensitivity of this measurement. Consequently, global efforts to tune Monte Carlo event generators should benefit from including our data.

Status of UE Tunes


Use LO α _s	ΡY	ΤH	IA 6). 21	F un	les		
A = 192 MeV!	Parameter	Tune DW	Tune DWT	ATLAS	Tune QW	Tune QWT	Tune QK	Tune QKT
K-factor	PDF	CTEQ5L	CTEQ5L	CTEQ5L	CTEQ6.1	CTEQ6.1	CTEQ6.1	CTEQ6.1
(Sjöstrand)	MSTP(2)	1	1	1	1	1	1	1
(ojost and)	MSTP(33)	0	0	0	0	1	1	1
	PARP(31)	1.0	1.0	1.0	1.0	1.0	1.8	1.8
	MSTP(81)	1	1	1	1	1	1	1
	MSTP(82)	4	4	4	4	4	4	4
UE Parameters	PARP(82)	1.9 GeV	1.9409 GeV	1.8 GeV	1.1 GeV	1.1237 GeV	1.9 GeV	1.9409 GeV
	PARP(83)	0.5	0.5	0.5	0.5	0.5	0.5	0.5
	PARP(84)	0.4	0.4	0.5	0.4	0.4	0.4	0.4
	PARP(85)	1.0	1.0	0.33	1.0	1.0	1.0	1.0
	PARP(86)	1.0	1.0	0.66	1.0	1.0	1.0	1.0
	PARP(89)	1.8 TeV	1.96 TeV	1.0 TeV	1.8 TeV	1.96 TeV	1.8 TeV	1.96 TeV
ISR Parameter	PARP(90)	0.25	0.16	0.16	0.25	0.16	0.2.5	0.16
	PARP(62)	1.25	1.25	1.0	1.25	1.25	1.25	1.25
	PARP(64)	0.2	0.2	1.0	0.2	0.2	0.2	0.2
	PARP(67)	2.5	2.5	1.0	2.5	2.5	2.5	2.5
	MSTP(91)	1	1	1	1	1	1	1
	PARP(91)	2.1	2.1	1.0	2.1	2.1	2.1	2.1
	PARP(93)	15.0	15.0	5.0	15.0	15.0	15.0	15.0

æ

@▶ < ≣

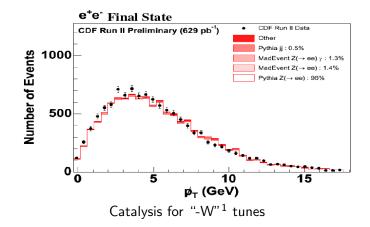
PYTHIA 6.2 Tunes

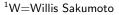
	1.96	TeV	14 TeV		
	P _{T0} (MPI)	σ(MPI) mb	P _{T0} (MPI)	σ(MPI) mb	
	GeV	mb	GeV	mb	
Tune DW	1.9409	351.7	3.1730	549.2	
Tune DWT	1.9409	351.7	2.6091	829.1	
ATLAS	2.0	324.5	2.7457	768.0	
Tune QW	1.1237	296.5	1.8370	568.7	
Tune QK	1.9409	259.5	3.1730	422.0	
Tune QKT	1.9409	259.5	2.6091	588.0	

→ Remember the p_{τ} cut-off, P_{τ_0} , of the MPI cross section is energy dependent and given by $P_{\tau_0}(E_{cm}) =$ PARP(82)×(E_{cm}/E_0)^{ε} with $\varepsilon =$ PARP (82))×(E_{cm}/E_0)^{ε} with $\varepsilon =$ PARP (82)) and $E_{\varepsilon} =$ PARP(89). → (90) and $E_{\varepsilon} =$ PARP(89). → Average charged particle density and PTsum density in the "transverse" region ($p_{\tau} > 0.5$ GeV/c, $\eta | < 1$) versus P_{τ} (jet#1) at 1.96 TeV for PY Tune DW, Tune QW, and Tune QK.

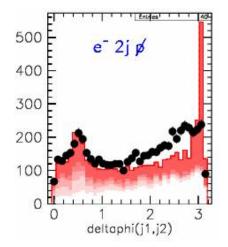
イロト イポト イヨト イヨト

3

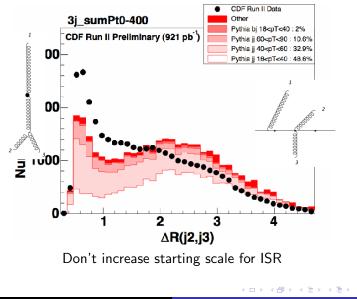

RF Tuning project is undermanned
"tuning" process is not algorithmic
Many refits spurred by Vista


A global comparison of Standard Model predictions to the high p_{T} data

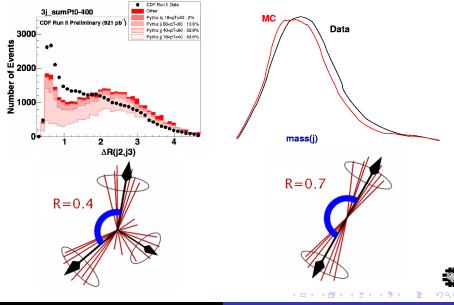
- Tools developed by Knuteson (MIT) + collaborators to test consistency of Standard Model predictions vs. data
 - The endgame is to find deviations that "'cannot"' be explained by Standard Model, but that is a "'long-term"' goal
 more details in later talk
- I became part of the "team" as discrepancies developed and matrix element-improved events were needed
- **3** We have found [first] and solved [first] a number of problems and served as a catalyst for RF tunes


"UE" Tune consistent with p_T of the Z
 Spike in dφ(j, j) = π
 Large dR(j₂, j₃) in 3-jet events

Large Intrinsic k_T

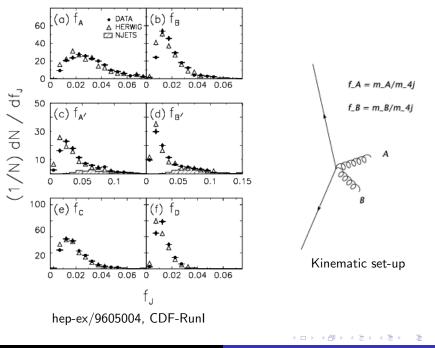


High- p_T is sensitive to UE



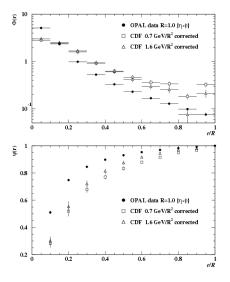
Allow FSR for multiple parton interactions

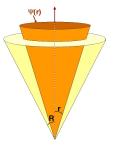
Tune A gives too much ISR



Case in Point: dR(j2,j3) and minMass(j)

Steve Geer led an effort to study multijets in Run I


- Nice analysis of 3-, 4-, and 5-jet production
- Comparison of Herwig and simple models to the data
- Some notable discrepancies $(f_i = mass fractions)$
- These are not hidden in the text
- Main discrepancies dropped at the end when quoting overall goodness-of-fit



is $\chi^2/\text{NDF} = 1.21$ (63 degrees of freedom). The observed distributions are described less well by the HERWIG parton shower Monte Carlo predictions, for which the X_4 , $\cos \theta_{3'}$, $\psi_{3'}$, and $\cos \theta_{3''}$ distributions have χ^2 s significantly poorer than those for the corresponding NJETS predictions. Restricting the comparison to those distributions predicted by both the NJETS and HERWIG calculations (i.e. all distributions except the single-body mass fraction distributions) we find the overall χ^2 per degree of freedom for the HERWIG comparison of the combined three-jet distributions is χ^2/NDF = 1.58 (45 degrees of freedom), for the combined four-jet distributions $\chi^2/\text{NDF} = 1.63$ (63 degrees of freedom), and for the combined five-jet distributions $\chi^2/\text{NDF} = 1.52$ (63 degrees of freedom).

> f_i removed from the overall fit no NJETS prediction for small f_i

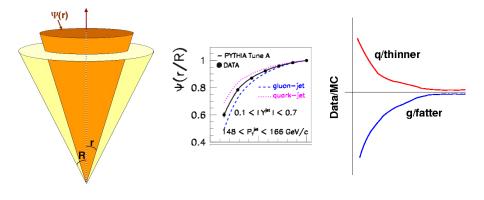
OPAL cone jet studies, Z.Phys.C63:197-212,1994

- LEP Jets .NE. TeV Jets
- Attributed to either UE or gluon jets
- Implies TeV Jets fatter!
- Would be useful to have access to the Z pole data

- Problem is rather "universal"
- High statistics
- Doesn't seem to depend on jet definition
- Doesn't seem to depend on detector
- Doesn't seem to depend on generator
- Reproducible in orthogonal analyses
- We are [I think] converging on a solution(s)

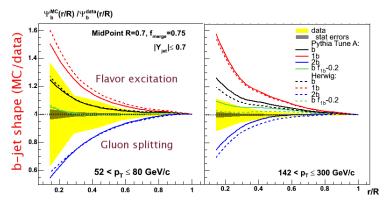
b-jet Shapes

Document(s)	Web Page Public Note
Contact(s)	A. Lister
Abstract	We present preliminary results on the integrated jet shapes of b-jets in inclusive b-jet production in p-pbar collisions at sqrt{s} = 1.96 TeV. The data used for this analysis were collected between February 2002 and September 2004 and represent an integrated luminosity of about 300 pb-1. The measurements are carried out for jets with rapidity yjet < 0.7 and transverse momentum between 52 and 300 GeV/c. The
	measured b-jet shapes are corrected to the particle level and compared to PYTHIA-Tune A and HERWIG predictions.
Comments	Last Update: October 2006 Dataset: 300 pb-1

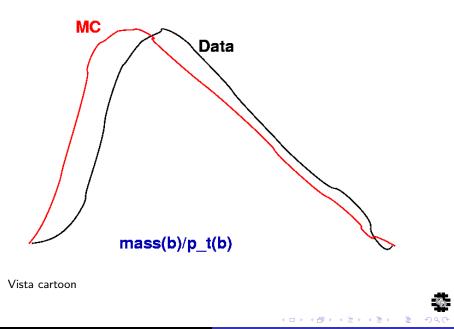

æ

___ ▶ <

This measurement shows that, despite relatively large systematic uncertainties, the measured b-quark jet shapes are significantly different from those expected from Pythia Tune A and Herwig Monte Carlo simulations. This difference seems to be in part explained by the fact that the fraction of b-quark jets that originate from flavour creation (where a single b-quark is expected inside the same jet cone) over those that originate from gluon splitting (where two b-quarks are expected to be inside the same jet cone) is slightly different in Monte Carlo predictions than in data. This measurement can help in the tuning of the fraction of gluon splitting to flavour creation b-quark jets in the Monte Carlo simulation. This tuning is particularly important for the extrapolation up to LHC energies where many searches will involve b-quark jets.


Jet Shapes

∢ 臣 ≯


▲ 母 ▶ ▲ 臣

æ

• Even after correcting $g \rightarrow b\bar{b}$, jet shapes differ

MC/data > 1 means jets are thinner

- Quick testing and feedback
- Ability to look at many channels at once
- Want/need methods to quickly reweight "old" Monte Carlo and converge on an answer

Want possibility to test hypotheses overnight or as soon as reasonably possible

- Only a handful of people doing this
- Should be done early on in debugging the experiment
- Bring different people together from the start A guiding force is needed to keep the project on track, or information is lost
- \blacksquare We should be prepared at the LHC start-up

Getting ready for the 900 GeV run

