Confronting fragmentation function universality with single hadron inclusive production at HERA and e^+e^- colliders

Simon Albino^a

simon@mail.desy.de

2nd Institute for Theoretical Physics, University of Hamburg (DESY)

Simon Albino (Hamburg University)

HERA and the LHC, 12-16 March 2007

^a in collaboration with B. A. Kniehl, G. Kramer, C. Sandoval (hep-ph/0611029)

Simon Albino (Hamburg University)

HERA and the LHC, 12-16 March 2007

Fragmentation at HERA – p. 2/18

$ep \rightarrow h + X$: Theory + Experiment $h = \pi^{\pm} + K^{\pm} + p/\overline{p}$

Theory

- PDFs: CTEQ6M MRST2001
- NLO, $n_f = 5$, $\Lambda_{\text{QCD}} = 226 \text{ MeV}$ (CTEQ6M)
- FFs: AKK KKP Kretzer $\sum_{k=1}^{n} x_p > 0.1$
- Also vary: $\mu = \mu_f$ quark tagging gluon FF hadron mass m_h (low Q) hadron species
- Neglect: quark mass higher twist small/large x_p resum $\Big\} \longrightarrow \log Q$
- Default: CTEQ6M, AKK, $m_h = 0, \mu_f = Q$
- Software: CYCLOPS

•••

Simon Albino (Hamburg University)

HERA and the LHC, 12-16 March 2007

Experiment

- Data: H1, ZEUS (current region)
- Distributed in: x_p, Q
- Given: E, s
- Cuts on (x, Q) plane:

$$W^{2} = (P+q)^{2} = Q^{2} \left(\frac{1}{x} - 1\right)$$
$$y = \frac{P \cdot q}{P \cdot k} = \frac{Q^{2}}{xs}$$
$$E' = E - Q^{2} \left(\frac{E}{xs} - \frac{1}{4E}\right)$$
$$\cos \theta_{e} = \frac{xs(4E^{2} - Q^{2}) - 4E^{2}Q^{2}}{xs(4E^{2} + Q^{2}) - 4E^{2}Q^{2}}$$
$$\cos \theta_{p} = \frac{xs(xs - Q^{2}) - 4E^{2}Q^{2}}{xs(xs - Q^{2}) + 4E^{2}Q^{2}}$$

x_p distributions vs. FFs

 $AKK \simeq Kretzer$

Low Q

• H1:

small x_p bad (small exp. errors, various theory issues) large x_p undershoot: resummation?

• ZEUS: General agreement

High Q (H1) General agreement (smaller pred. errors)

Hadron mass effects at small x_p , low Q

Particles confined to 3-axis: $(V^+, V^-) = \frac{1}{\sqrt{2}}V^0(+, -)V^3$ $\mathbf{V}_T = \mathbf{0}$

 $p_h = \left(\frac{m_h^2}{2\xi_p q^-}, \xi_p q^-\right)$

 $q = \left(-\frac{Q^2}{2q^-}, q^-\right)$

Leading twist factorization:

•
$$p' = \left(0, \frac{p_h^-}{y}\right)$$

•
$$\frac{d\sigma^h}{d\xi_p}(\xi_p, Q^2) = \int_{\xi_p}^1 \frac{dy}{y} \frac{d\sigma^h}{dy} \left(y, Q^2, \mu_f^2\right) D\left(\frac{\xi_p}{y}, \mu_f^2\right)$$

Relation to experiment:

Variable ξ_p :

- Like DIS Nachtmann ξ
- 3-axis boost invariant
- true "x" of factorization

•
$$x_p = \xi_p \left(1 - \frac{m_h^2}{Q^2 \xi_p^2} \right)$$

• $\frac{d\sigma^h}{dx_p}(x_p, Q^2) = \frac{1}{1 + \frac{m_h^2}{Q^2 \xi_p^2}} \frac{d\sigma^h}{d\xi_p}(\xi_p, Q^2)$

$Q \uparrow$, pred. errors \downarrow (H1)

Quark tagging (H1)

Proton is good source of u

s relatively large

In principle, ep and e^+e^- together can separate uds FFs

Hadron identification (H1)

HERA and the LHC, 12-16 March 2007

Q distributions vs. FFs

Agreement if x_p intermediate and / or Q large

Hadron mass dependence vs. Q (H1)

Mass effects are most relevant at smaller x_p

Large mass required for agreement \longrightarrow other theoretical input required

Pred. errors (ZEUS)

Simon Albino (Hamburg University)

Low
$$Q, \mu/Q = 1/2$$
:

 $c \text{ threshold} \rightarrow \text{non-physical dip}$

Components (H1)

Summary

- AKK, KKP, Kretzer predictions \simeq high Q and/or intermediate x_p @ HERA
- Gluon fragmentation unimportant
- AKK \simeq Kretzer
- Low Q: Deviations at small x_p (various effects), large x_p (resummation?)
- Data from e^+e^- and future ep: improve uds separation
- Future high Q HERA data (hadron identified + quark tagged(?)) valuable

$pp \to h + X$

g fragmentation

10¹

10[°]

10

 $Eq^{3} Qdp^{3} (mp \text{ GeV}^{-2} c^{3})$

 10^{-5}

10⁻⁶

10⁻⁷

0

- *pp* description: dominates
- e^+e^- fits: not well constrained (no $q\gamma$ coupling)

AKK

7

8

- - KKP

• UA1 • STAR

5

6

• *ep* description: not important

More optimistically

- *pp*: *q* fragmentation still relevant
- e^+e^- fits: $g \to \pi^{\pm}$ OK (accurate π^{\pm} data)
- Future HERA data: better FFs for fragmentation@LHC

3

 p_T (GeV/c)

2

Global Analyses of Unpolarized FFs

- Light charged hadrons (l.c.h.) π^{\pm} , K^{\pm} , p/\bar{p}
- Σ Hadron (quark) spins and charge

Most recent are

Kniehl-Kramer-Pötter (2000)

$$D_u^{\pi^{\pm}}(x, M_0) = D_d^{\pi^{\pm}}(x, M_0)$$
$$D_u^{K^{\pm}}(x, M_0) = D_s^{K^{\pm}}(x, M_0)$$
$$D_u^{p/\overline{p}}(x, M_0) = 2D_d^{p/\overline{p}}(x, M_0)$$

Albino-Kniehl-Kramer (2005)

- Update of KKP
- $D_{u,d,s}^h$ from OPAL tagging probabilities
- Also for K_0^S , Λ

Since 2000, l.c.h. studies also from

- Kretzer (π^{\pm} , K^{\pm} , charged)
- Bourhis, Fontannaz, Guillet, Werlen (charged)

e^+e^- data

Rely mostly on $e^+ + e^- \rightarrow Z, \gamma \rightarrow X + h(=h^+ + h^-)$

- *h* identified
- Aleph, delphi, sld ($\sqrt{s} = 91 \text{ GeV}$), tpc (29 GeV) (uds, c, b)
- OPAL tagging probabilities ($\sqrt{s} = 91 \text{ GeV}$) (u, d, s, c, b)

OPAL probabilities rather model independent (SU(2) isospin, quark b.r.'s from pQCD) Excluded in AKK:

- h unidentified (contaminated with other charged particles) use for checking
- $x_p < 0.1$ (soft gluon logarithms)

Importance of $ep \rightarrow h + X$ **data**

 p_T and y distributions

• *pp* @ UA1/2+CDF

large p_T : scale uncertainty

small p_T : non-perturbative

• γp @ H1+ZEUS as above, + errors from γ PDFs

• $\gamma\gamma$ @ OPAL

as above

ep

- Breit frame: target / current separation clean
- x_p in current region $\simeq x_p$ of e^+e^- event hemisphere

 \longrightarrow direct test of FF universality

Cuts in (x, Q) **plane**

