NNLO Upgrade of QCDNUM

Michiel Botje NIKHEF PO Box 41882 1009DB Amsterdam

Presented at the HERALHC workshop, DESY, March 12-17, 2007

What is QCDNUM

- QCDNUM is a Fortran program that performs numerical DGLAP evolution of parton densities on a discrete grid in x and μ^2
- QCDNUM provides
 - Evolution of a_s
 - Evolution of unpolarized parton densities
 - Calculation of the structure functions F_2 , F_L and xF_3
 - Possibility to independently vary the renormalization and factorization scales
- All this up to NNLO in QCDNUM17

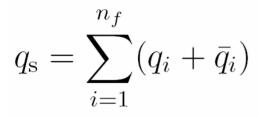
QCDNUM has a long history...

1988	Original code by Ouraou and Virchaux (BCDMS)	CRAY vectorized Fortran	~15 min
1993	NMC adaptation to low x	CRAY vectorized Fortran	~15 min
1998	QCDNUM16.12 used by ZEUS	Unix Fortran77	~10 min
2007	NNLO upgrade QCDNUM17	Unix Fortran77	~1-5 min

QCDNUM17 Beta release ~today

HERALHC workshop, March 13, 2007

What is new in QCDNUM17


Fully NNLO

- Automatic separation of PDFs into singlet and non-singlet distributions
- Quadratic spline interpolation
- New very fast evolution algorithm on multiple equidistant grids
- Two alternative definitions of $F_{\rm L}$

User friendly, fast, accurate

HERALHC workshop, March 13, 2007

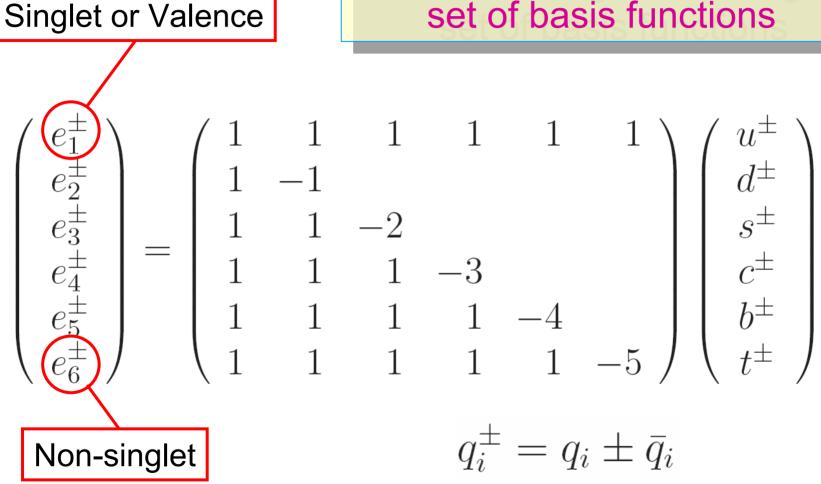
Singlet/gluon evolution

$$\frac{\partial}{\partial \ln \mu^2} \begin{pmatrix} q_{\rm s} \\ g \end{pmatrix} = \begin{pmatrix} P_{\rm qq} & P_{\rm qg} \\ P_{\rm gq} & P_{\rm gg} \end{pmatrix} \otimes \begin{pmatrix} q_{\rm s} \\ g \end{pmatrix}$$

Non-singlet evolution

$$q_{ij}^{\pm} = (q_i \pm \bar{q}_i) - (q_j \pm \bar{q}_j)$$

$$q_{\rm v} = \sum_{i=1}^{n_f} (q_i - \bar{q}_i)$$


n

$$\begin{array}{c|cccc} & \text{LO} & \text{NLO} & \text{NNLO} \\ \hline q_{ij}^+ & P_{qq} & P_+ & P_+ \\ q_{ij}^- & P_{qq} & P_- & P_- \\ q_{v} & P_{qq} & P_- & P_{v} \end{array}$$

 $\frac{\partial q_{\rm ns}}{\partial \ln \mu^2} = P_{\rm ns} \otimes q_{\rm ns}$

HERALHC workshop, March 13, 2007

QCDNUM uses internally a standard singlet/non-singlet set of basis functions

HERALHC workshop, March 13, 2007

QCDNUM supports two evolution schemes

- <u>FFNS</u>: number of active flavors is kept constant $3 < n_f < 6$ for all μ^2
- <u>VFNS</u>: number of flavors changes from n_f to n_f +1 at the thresholds μ_c^2 , μ_b^2 and μ_t^2
 - At LO and NLO, α_s and the PDFs are continuous at the thresholds
 - At NNLO there are discontinuities in α_s and the PDFs

Chetrikrin et al., PRL 79(1997)2184 Buza et al.,EPJ C1(1998)301

HERALHC workshop, March 13, 2007

Renormalization scale dependence

 QCDNUM supports a linear relation between the renormalization and factorization scale

$$\mu_{\rm R}^2 = a_{\rm R} \,\mu_{\rm F}^2 + b_{\rm R}$$

• Affects α_s used in the perturbative expansions

 $P_{ij}(x,\mu^2) = a_{\rm s}(\mu^2) \ P_{ij}^{(0)}(x) + a_{\rm s}^2(\mu^2) \ P_{ij}^{(1)}(x) + a_{\rm s}^3(\mu^2) \ P_{ij}^{(2)}(x)$

Renormalization scale dependence affects both the PDFs and the structure functions

HERALHC workshop, March 13, 2007 M. Botje, NNLO upgrade of QCDNUM

Factorization scale dependence

- Likewise $Q^2 = a_{\rm Q} \, \mu_{\rm F}^2 + b_{\rm Q}$
- Affects only F_2 , F_L , xF_3 but in a complicated way...

$$\begin{split} \mathbf{C}_{i}^{(0)} &\to \mathbf{C}_{i}^{(0)} \qquad \mathbf{C}_{i}^{(k)} \to \mathbf{C}_{i}^{(k)} + \sum_{m=1}^{\kappa} \mathbf{C}_{i}^{(k,m)} L_{\mathrm{F}}^{m} \\ \mathbf{C}_{i}^{(1,1)} &= \mathbf{C}_{i}^{(0)} \otimes \mathbf{P}^{(0)} \\ \mathbf{C}_{i}^{(2,1)} &= \mathbf{C}_{i}^{(0)} \otimes \mathbf{P}^{(1)} + \mathbf{C}_{i}^{(1)} \otimes \left[\mathbf{P}^{(0)} - \beta_{0} \mathbf{I} \right] \\ \mathbf{C}_{i}^{(2,2)} &= \frac{1}{2} \mathbf{C}_{i}^{(1,1)} \otimes \left[\mathbf{P}^{(0)} - \beta_{0} \mathbf{I} \right] \\ \mathbf{C}_{i}^{(3,1)} &= \mathbf{C}_{i}^{(0)} \otimes \mathbf{P}^{(2)} + \mathbf{C}_{i}^{(1)} \otimes \left[\mathbf{P}^{(1)} - \beta_{1} \mathbf{I} \right] + \mathbf{C}_{i}^{(2)} \otimes \left[\mathbf{P}^{(0)} - 2\beta_{0} \mathbf{I} \right] \\ \mathbf{C}_{i}^{(3,2)} &= \frac{1}{2} \left\{ \mathbf{C}_{i}^{(1,1)} \otimes \left[\mathbf{P}^{(1)} - \beta_{1} \mathbf{I} \right] + \mathbf{C}_{i}^{(2,1)} \otimes \left[\mathbf{P}^{(0)} - 2\beta_{0} \mathbf{I} \right] \right\} \\ \mathbf{C}_{i}^{(3,3)} &= \frac{1}{3} \mathbf{C}_{i}^{(2,2)} \otimes \left[\mathbf{P}^{(0)} - 2\beta_{0} \mathbf{I} \right] . \end{split}$$

HERALHC workshop, March 13, 2007

*F*_L is calculated as the convolution of a parton density and a coefficient function

• The usual expansion of $C_{\rm L}$ gives a vanishing $F_{\rm L}$ at LO

$$C_{\mathrm{L},i} = 0 + a_{\mathrm{s}} C_{\mathrm{L},i}^{(1)} + a_{\mathrm{s}}^2 C_{\mathrm{L},i}^{(2)}$$

QCDNUM supports an alternative F'_{L} by including a 3-loop coefficient function in the expansion of C_{L}

$$C_{\mathrm{L},i} = a_{\mathrm{s}} C_{\mathrm{L},i}^{(1)} + a_{\mathrm{s}}^2 C_{\mathrm{L},i}^{(2)} + a_{\mathrm{s}}^3 C_{\mathrm{L},i}^{(3)}$$

S. Moch et al., PL B606 (2005) 123

HERALHC workshop, March 13, 2007

Numerical method in a nutshell

- Solve DGLAP numerically on an n x m grid
- Based on linear and quadratic polynomial spline interpolation on multiple equidistant grids
- Convolution integrals become weighted sums with weights calculated at initialization
- Evolution step becomes a lower triangular n x n
 matrix equation solved by forward substitution
- This is the only O(n²) inside loop calculation in the whole program; everything else is O(n)
- QCDNUM17 is very fast

HERALHC workshop, March 13, 2007

A full NNLO analysis in ten lines

- call QCINIT(6,' ')
- call SETORD(iord)
- call SETALF(as0,r20)
- call SETTHR(nfin,q2c,q2b,q2t)
- call GXMAKE(xmin,1,1,nxin,nx,iosp)
- call GQMAKE(qq,wt,2,nqin,nq)
- call FILLWT(0,id1,id2,nw)
- call EVOLFF(func,def,iq0,eps)
- call ALLPDF(x,q,pdf,0)
- call STRFUN(2,proton,x,q,F2p,1,0)

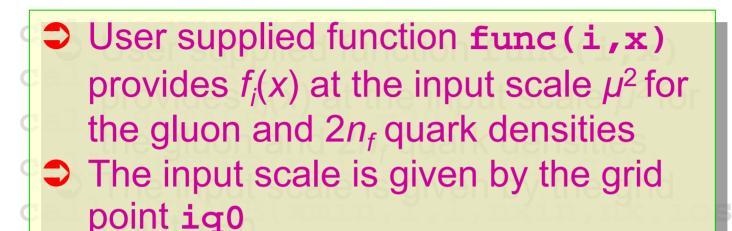
QCDNUM initialization

- call QCINIT(6,' ')
- call SETORD(iord)
- call SETALF(as0,r20)
- call SETTHR(nfin,q2c,q2b,q2t)

Grids and weights

- \bigcirc Define (multiple) x grid(s) Define spline interpolation order **Define** μ^2 grid
- call GXMAKE(xmin,1,1,nxin,nx,iosp)

DELINK (MELN, 920, 920, 920)

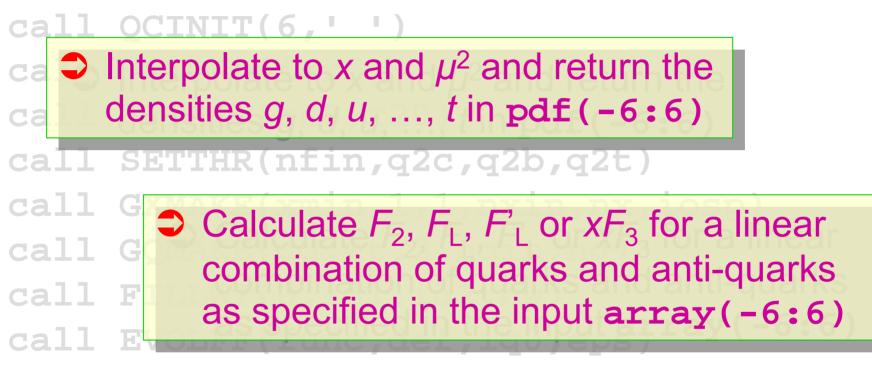

- call GQMAKE(qq,wt,2,nqin,nq)
- call FILLWT(0, id1, id2, nw)
- call EVOLFF(func,def,iq0,eps)

call ALLPDF(x,q) **Call ALLPDF**(x,q) **Partition** the internal store

call STRFUN(2, pr Calculate weight tables

HERALHC workshop, March 13, 2007

NNLO evolution of all PDFs

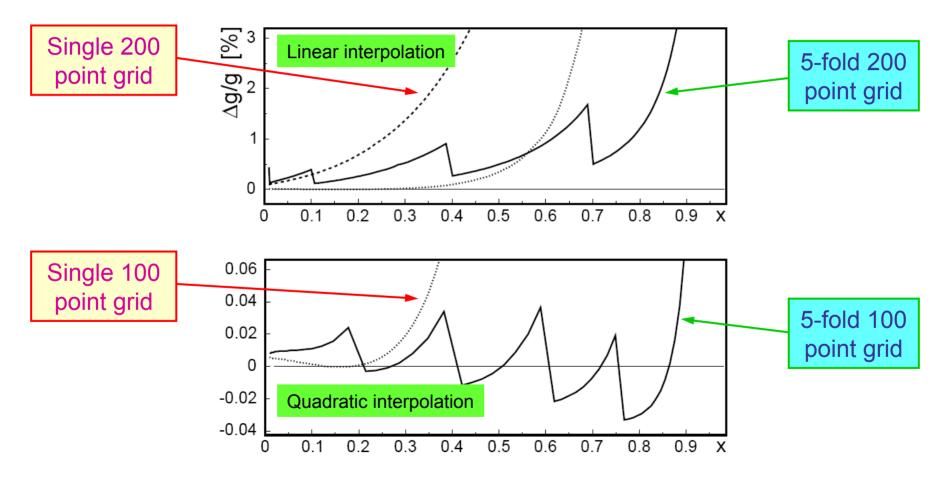

In the VFNS, iq0 < charm threshold</p>

call EVOLFF(func,def,iq0,eps)

FLUDWI (U, LQL, LQZ, IIW)

Call
The flavor decomposition of each input quark density is given in def(-6:6,12)

Harvest the results....


call ALLPDF(x,q,pdf,0)

call STRFUN(2,proton,x,q,F2p,1,0)

HERALHC workshop, March 13, 2007

QCDNUM-Pegasus comparison

⇒ NLO gluon evolution from $\mu^2 = 2$ to 10^4 GeV²

HERALHC workshop, March 13, 2007

QCDNUM17 accuracy

- NLO gluon evolution from $\mu^2 = 2$ to 10^4 GeV² on an *x* grid down to $x = 10^{-5}$
- Single 200 point grid with linear interpolation $\Delta g/g < 2\%$ for x < 0.35
- Single 100 point grid with quadratic interpolation $\Delta g/g < 2\%$ for x < 0.65
- Five-fold 200 point grid with linear interpolation $\Delta g/g < 2\%$ for x < 0.85
- Five-fold 100 point grid with quad interpolation $\Delta g/g < 5 \ge 10^{-4}$ for x < 0.9
- Gain in speed by factor of 4 with quadratic interpolation because the number of grid points can be reduced from 200 to 100....

Status of present Beta release

- \bigcirc PDF and α_s evolution should be OK
- Renormalization scale dependence implemented but needs some more tests
- Structure functions implemented but need some more tests
- Sectorization scale dependence not yet implemented
- \otimes Alternative F'_{L} not yet available

To Summarize...

- QCDNUM17 is basically OK but might still need a bit of shakedown
- Factorization scale dependence and alternative $F_{\rm L}$ will soon be implemented
- You can get the current Beta release and write-up from

http://www.nikhef.nl/~h24/qcdnum