Matching Constrained Monte Carlo at NLO
 Philip Stephens, IFJ-PAN, Kraków Poland
 Status of NLO matching of CMC algorithm for LHC

This work is supported by the EU grant mTkd-CT-2004-510126 In partnership with the CERN Physics Department and by the Polish Ministry of Scientific Research and Information Technology grant No 620/E-77/6.PRUE/DIE 188/2005-2008.

Overview

- Constrained Monte Carlo (CMC)
- Combination of Two-Hemispheres
- NLO Calculation
- Subtraction Term for NLO calculation
- Subtraction Term vs. Parton Shower
- Matching Prescription

Constrained Monte Carlo

- Solve evolution equation

$$
Q^{2} \frac{d D\left(x, Q^{2}\right)}{d Q^{2}}=\int_{x} d z P(z) D\left(x / z, Q^{2}\right)
$$

- Can have different arguments of running coupling and treatment of soft region
- depart from DGLAP evolution
- Iterative solution can be written in terms of four-momentum of emissions

Constrained Monte Carlo

- Iterative Solution

$$
\begin{aligned}
D\left(x, Q^{2}\right)= & e^{-\Phi\left(Q^{2}, Q_{Q}^{2} \mid x\right)} D\left(x, Q_{0}^{2}\right) \\
& \times \sum_{n=0}^{\infty} \int_{0}^{1} d x_{0} D\left(x_{0}, Q_{0}^{2}\right)\left[\prod_{i=1}^{n} \int_{t_{i-1}}^{t} \frac{d Q_{i}^{2}}{Q_{i}^{2}} \int_{0}^{1} d z_{i}\right] \\
& \times e^{-\Phi\left(Q^{2}, Q_{n}^{2} \mid x_{n}\right)}\left[\prod_{i=1}^{n} \frac{K\left(Q_{i}^{2}, z_{i} \mid x_{i-1}\right)}{1-z_{i}} e^{-\Phi\left(Q_{i}^{2}, Q_{i-1}^{2} \mid x_{i-1}\right)}\right] \\
& \times \delta\left(x-x_{0} \prod_{j} z_{j}\right) \\
= & \int d x_{0} \mathcal{U}\left(x, Q^{2} ; x_{0}, Q_{0}^{2}\right) D\left(x_{0}, Q_{0}^{2}\right)
\end{aligned}
$$

- Insert delta condition to fix final x value
- This constraint is satisfied by CMC algorithm (see talk of S. Jadach)

Combining two hemispheres

- We have an algorithm to generate one shower
- Want to construct algorithm for HH \rightarrow colourless object
- To combine two we must fix the partonic s
- Necessary for resonances, etc.
- Impose an additional delta function

$$
\delta\left(s-\left(p x_{0}+\bar{p} \bar{x}_{0}-\sum_{F} k_{i}-\sum_{B} \bar{k}_{i}\right)^{2}\right)
$$

- Now s is given by the full momentum reconstructed s, rather than just $x_{1} x_{2} S$

Combining two hemispheres

- Result is

$$
d \sigma=\int d x d \bar{x} D\left(x, Q^{2}\right) D\left(\bar{x}, Q^{2}\right) d \sigma(s) \delta_{s}
$$

- A factorization formula
- If we "downgrade" our shower to produce partons with no k_{T} we retrieve standard collinear factorization formula
- The extra delta can be satisfied by rescaling momentum by common factor, Y

Combining two hemispheres

- CMC evolution variable is related to rapidity
- The maximum evolution time is defined for each hemisphere by some division line, η^{*}

$$
\eta^{*}=\frac{1}{2} \ln \frac{x}{\bar{x}}
$$

- Final result for cross section is

$$
\begin{aligned}
d \sigma= & \int d x d \bar{x} \int d x_{0} d \bar{x}_{0} \mathcal{U}\left(q^{*}, x ; q_{0}, x_{0}\right) \mathcal{U}\left(\bar{q}^{*}, \bar{x} ; \bar{q}_{0}, \bar{x}_{0}\right) \\
& \times D\left(x_{0}, q_{0}\right) D\left(\bar{x}_{0}, \bar{q}_{0}\right) d \sigma(s) \delta_{s}
\end{aligned}
$$

Issues for matching

- In order to use the evolution operators, \mathcal{U}, and match the hard process at NLO we must address
\square IR regularization of ME
- Double counting
- Finite effects in collinear region
\square Negative weights
- Connection to factorization theorems and schemes

NLO Matrix Element

- NLO calculation (from Feynman diagrams) is generally of the form (in 4-2 ε dimensions)

$$
\begin{aligned}
d_{n+1} \sigma_{V}= & {\left[\left(\frac{A_{V}}{\varepsilon^{2}}+\frac{B_{V}}{\varepsilon}\right) d_{n} \sigma_{B}+d_{n} \sigma_{V, r e g}\right] \delta\left(p^{+}\right) \delta\left(p^{-}\right) d p^{+} d p^{-} } \\
d_{n+1} \sigma_{R}= & d_{n+1} \sigma_{F}+\frac{\delta\left(p^{+}\right) \delta\left(p^{-}\right)}{\varepsilon^{2}} d_{n} \sigma_{S} d p^{+} d p^{-} \\
& +\frac{d p^{+} d p^{-}}{\varepsilon}\left(d_{n} \sigma_{c+}\left(p^{+}\right) \delta\left(p^{-}\right)+d_{n} \sigma_{c-}\left(p^{-}\right) \delta\left(p^{+}\right)\right)
\end{aligned}
$$

- Angular variable is implicit
$-p^{+}$and p^{-}are light-cone components of gluon emission

NLO Calculation

- Soft singularities from real cancel with virtual singularities
- Collinear singularities are treated by factorization scheme
- Using the factorization scheme and sense of distributions the NLO result is

$$
d \sigma_{N L O}=d \hat{\sigma}_{S V}+d \hat{\sigma}_{c+}+d \hat{\sigma}_{c-}+d \sigma_{F}
$$

Counterterm for NLO

- To avoid double counting we use kernel of MC as a counterterm
- Virtual counterterm is minus the integral of the real one
- Subtraction terms phase space is divided in the same manner as the MC, η^{*} $d \sigma_{V, c t}=\int \frac{d p^{+}}{\left(p^{+}\right)^{1+\varepsilon}} \frac{d p^{-}}{\left(p^{-}\right)^{1+\varepsilon}}\left[K\left(p^{+}, \varepsilon\right) \boldsymbol{\theta}_{F}\left(\eta^{*}\right)+\boldsymbol{K}\left(p^{-}, \varepsilon\right) \boldsymbol{\theta}_{B}\left(\eta^{*}\right)\right] d_{n} \sigma_{B}$
- The virtual counterterm is then

$$
d \sigma_{V, c t}=4 \pi \alpha_{S} \mu_{R}^{2 \varepsilon} s^{-\varepsilon} C_{F} N(\varepsilon) H(\varepsilon) d \sigma_{B}\left(\frac{4}{\varepsilon^{2}}+\frac{6}{\varepsilon}+4 \eta^{* 2}+8\right)
$$

- The $\eta^{* 2}$ piece is residual effect of hemisphere matching. Disappears from all physical observables

Subtraction Term vs. Parton Shower

- Due to ordering and IR regulator the subtraction term differs from PS contribution

Subtraction Term vs. Parton Shower

- We have the regularized quantity

$$
d \hat{\sigma}_{R / V}=d \sigma_{R / V}-d \sigma_{R / V, c t}
$$

- Where the counterterm can be written as

$$
d \sigma_{R / V, c t}=\rho_{P S}^{R / V}+\rho_{C}^{R / V}+\rho_{S}^{R / V}
$$

- And the quantity

$$
d \sigma_{R}-\rho_{P S}^{R}=d \hat{\sigma}_{R}+\rho_{C}^{R}+\rho_{S}^{R}
$$

will be of interest later on...

Subtraction Term vs. Parton Shower

- The soft region can be ignored for IR safe observables
- These are "unresolvable" emissions from PS
- The collinear region has the same structure as in collinear pdf
- Can isolate poles order-by-order and use these to renormalize the bare proton distribution
- These collinear poles have the same form as in standard pdf, can use the same prescription as MS

Subtraction Term vs. Parton Shower

- After using a factorization scheme there is some finite scheme-dependent piece of ρ_{C} remaining

$$
\hat{\rho}_{C, \overline{M S}}^{R}(z)=\rho_{C}^{R}-\frac{1}{2 \pi \bar{\varepsilon}} P(z) d \sigma_{B} d z
$$

- This defines a collinear NLO correction
- For those familiar with MC@NLO these are the same as the 2 tilde contributions
- Treated by longitudinal boost
- Optimal treatment for CMC is still under investigation

Matching prescription

- We return to our factorization formula

$$
\begin{aligned}
d \sigma= & \int d x d \bar{x} \int d x_{0} d \bar{x}_{0} \mathcal{U}\left(q^{*}, x ; q_{0}, x_{0}\right) \mathcal{U}\left(\bar{q}^{*}, \bar{x} ; \bar{q}_{0}, \bar{x}_{0}\right) \\
& \times D\left(x_{0}, q_{0}\right) D\left(\bar{x}_{0}, \bar{q}_{0}\right) d \sigma(s) \delta_{s}
\end{aligned}
$$

- We then separate each evolution operator at some rapidity, $\xi\left(x^{\prime}=z x ; \bar{x}^{\prime}=\bar{z} \bar{x}\right)$

$$
\begin{aligned}
& \int d x d \bar{x} d x_{0} d \bar{x}_{0} d x^{\prime} d \bar{x}^{\prime} \\
& \times\left[\mathcal{U}\left(q^{*}, x ; \xi, x^{\prime}\right) \mathcal{U}\left(\xi, x^{\prime} ; q_{0}, x_{0}\right) \mathcal{U}\left(\bar{q}^{*}, \bar{x} ; \bar{q}_{0}, \bar{x}_{0}\right) \delta\left(\bar{x}^{\prime}\right) \theta_{F}\left(\eta^{*}, \xi\right)\right. \\
& \left.+\mathcal{U}\left(q^{*}, x ; q_{0}, x_{0}\right) \mathcal{U}\left(\bar{q}^{*}, \bar{x} ; \xi, \bar{x}^{\prime}\right) \mathcal{U}\left(\xi, \bar{x}^{\prime} ; \bar{q}_{0}, \bar{x}_{0}\right) \delta\left(x^{\prime}\right) \theta_{B}\left(\eta^{*}, \xi\right)\right] \\
& \times D\left(x_{0}, q_{0}\right) D\left(\bar{x}_{0}, \bar{q}_{0}\right) d \sigma(s) \delta_{s}
\end{aligned}
$$

Matching prescription

- Logical choice of ξ last emission from either leg

- Choose emission with highest p_{T}

Matching prescription

- We define an additional weight factor, β such that the NLO cross section is

$$
\begin{aligned}
d \sigma^{N L O}= & \int d x d \bar{x} d x_{0} d \bar{x}_{0} d x^{\prime} d \bar{x}^{\prime} \\
& \times\left[\mathcal{U}\left(q^{*}, x ; \xi, x^{\prime}\right) \mathcal{U}\left(\xi, x^{\prime} ; q_{0}, x_{0}\right) \mathcal{U}\left(\bar{q}^{*}, \bar{x} ; \bar{q}_{0}, \bar{x}_{0}\right) \delta\left(\bar{x}^{\prime}\right) \theta_{F}\left(\eta^{*}, \xi\right)\right. \\
& \left.+\mathcal{U}\left(q^{*}, x ; q_{0}, x_{0}\right) \mathcal{U}\left(\bar{q}^{*}, \bar{x} ; \xi, \bar{x}^{\prime}\right) \mathcal{U}\left(\xi, \bar{x}^{\prime} ; \bar{q}_{0}, \bar{x}_{0}\right) \delta\left(x^{\prime}\right) \theta_{B}\left(\eta^{*}, \xi\right)\right] \\
& \times D\left(x_{0}, q_{0}\right) D\left(\bar{x}_{0}, \bar{q}_{0}\right) d \sigma(s) \delta_{s} \beta\left(\xi, x^{\prime}, \bar{x}^{\prime}\right)
\end{aligned}
$$

Matching prescription

- Expanding to $O\left(a_{s}\right)$

$$
\begin{aligned}
d \sigma_{N L O}= & \int d x d \bar{x} d x^{\prime} d \bar{x}^{\prime}\left[D\left(x^{\prime}, \xi\right) D\left(\bar{x}, \bar{q}^{*}\right)\left(1+\rho_{P S}^{V}+\rho_{P S}^{R}\right) \theta_{F}\left(\eta^{*}, \xi\right) \delta\left(\bar{x}^{\prime}\right)\right. \\
& \left.+D\left(x, q^{*}\right) D\left(\bar{x}^{\prime}, \xi\right)\left(1+\bar{\rho}_{P S}^{V}+\bar{\rho}_{P S}^{R}\right) \theta_{B}\left(\eta^{*}, \xi\right) \delta\left(x^{\prime}\right)\right] \\
& {\left[\left(\beta_{0}^{(0)}+\beta_{0}^{(1)}\right) \delta\left(x-x^{\prime}\right) \delta\left(\bar{x}-\bar{x}^{\prime}\right)+\beta_{1}^{(1)}\left(\xi, x^{\prime}, \bar{x}^{\prime}\right)\right] d \sigma_{B}(s) }
\end{aligned}
$$

- Comparing to standard factorization formula

$$
d \sigma_{N L O}=\int d x d \bar{x} f\left(x, \mu_{F}^{2}\right) f\left(\bar{x}, \bar{\mu}_{F}^{2}\right) d \hat{\sigma}_{N L O}\left(x \bar{x} S, \mu_{F}^{2}, \bar{\mu}_{F}^{2}\right)
$$

Matching prescription

- Thus we find

$$
\begin{aligned}
\beta_{0}^{(0)} & =1 \\
\beta_{0}^{(1)} & =\frac{d \sigma_{V}-\rho_{P S}^{V}-\bar{\rho}_{P S}^{V}-P D F}{d \sigma_{B}} \\
& =\frac{d \hat{\sigma}_{V}}{d \sigma_{B}}+\frac{\hat{\rho}_{C}^{V}+\hat{\rho}_{C}^{V}}{d \sigma_{B}} \\
& =\beta_{0}^{1}+\beta_{0}^{c+}+\beta_{0}^{c-} \\
\beta_{1}^{(1)} & =\frac{d \sigma_{R}-\rho_{P S}^{R}-\bar{\rho}_{P S}^{R}-P D F}{d \sigma_{B}} \\
& =\frac{d \hat{\sigma}_{R}}{d \sigma_{B}}+\frac{\hat{\rho}_{C}^{R}(z)}{d \sigma_{B}}+\frac{\hat{\rho}_{C}^{R}(\bar{z})}{d \sigma_{B}} \\
& =\beta_{1}\left(\xi, x^{\prime}, \bar{x}^{\prime}\right)+\beta_{1}^{c+}(z)+\beta_{1}^{c--}(\bar{z})
\end{aligned}
$$

Conclusion

- We have a Monte Carlo which generates parton shower in both forward and backward hemisphere
- Constructed in a non-Markovian way
- Full coverage of phase space
- Prescription for regularizing NLO calculation
- Method for matching parton shower to NLO calculation
- Some connection factorization theorem
- Scheme dependent contributions

Conclusion

- Currently implementing $\mathrm{W}^{+} \mathrm{W}^{-}$at NLO
- Remaining issues
- Must implement quark-gluon transitions in parton shower for two hemispheres
- Must fit initial parton distributions to DIS data
- Would like to use matched NLO DIS for fits
- Once working for one process should be quick to implement additional processes

